B.E. BIOMEDICAL ENGINEERING
I TO VIII SEMESTERS CURRICULUM AND SYLLABUS

SEMESTER I

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS6151</td>
<td>Technical English – I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA6151</td>
<td>Mathematics – I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH6151</td>
<td>Engineering Physics – I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY6151</td>
<td>Engineering Chemistry – I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>GE6151</td>
<td>Computer Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>GE6152</td>
<td>Engineering Graphics</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE6161</td>
<td>Computer Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>GE6162</td>
<td>Engineering Practices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>GE6163</td>
<td>Physics and Chemistry Laboratory - I</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>17</td>
<td>2</td>
<td>11</td>
<td>26</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>HS6251</td>
<td>Technical English – II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>MA6251</td>
<td>Mathematics – II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>PH6251</td>
<td>Engineering Physics – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CY6251</td>
<td>Engineering Chemistry – II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC6202</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>EE6201</td>
<td>Circuit Theory</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>GE6262</td>
<td>Physics and Chemistry Laboratory - II</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>EC6211</td>
<td>Circuits and Devices Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>18</td>
<td>4</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>
SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA6351</td>
<td>Transforms and Partial Differential Equations</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>BM6301</td>
<td>Bio Chemistry</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>EC6303</td>
<td>Signals and Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>BM6302</td>
<td>Sensors and Measurements</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC6301</td>
<td>Object Oriented Programming and Data Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>BM6303</td>
<td>Anatomy and Human Physiology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BM6311</td>
<td>Bio Chemistry and Human Physiology Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BM6312</td>
<td>OOPS and Data Structures Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>18</td>
<td>2</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>

SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA6451</td>
<td>Probability and Random Processes</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>BM6401</td>
<td>Medical physics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BM6402</td>
<td>Basics of Electrical Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BM6403</td>
<td>Analog and Digital ICs</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>BM6404</td>
<td>Pathology and Microbiology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CS6304</td>
<td>Analog and Digital Communication</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BM6411</td>
<td>Circuits and ICs Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BM6412</td>
<td>Pathology and Microbiology Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>18</td>
<td>1</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
SEMESTER V

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BM6501</td>
<td>Bio Control Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>BM6502</td>
<td>Diagnostic and Therapeutic Equipment - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BM6503</td>
<td>Bio Materials and Artificial Organs</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BM6504</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC6504</td>
<td>Microprocessor and Microcontroller</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>MD6501</td>
<td>Hospital Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BM6511</td>
<td>Microprocessor and Microcontroller Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BM6512</td>
<td>Bio Medical Instrumentation Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>GE6674</td>
<td>Communication and Soft Skills - Laboratory Based</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td>1</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>

SEMESTER VI

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BM6601</td>
<td>Radiological Equipment</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BM6602</td>
<td>Biomechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BM6603</td>
<td>Diagnostic and Therapeutic Equipment - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>EC6502</td>
<td>Principles of Digital Signal Processing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5.</td>
<td>GE6351</td>
<td>Environmental Science and Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective –I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BM6611</td>
<td>Digital Signal Processing Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BM6612</td>
<td>Diagnostic and Therapeutic Equipment Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td>1</td>
<td>6</td>
<td>23</td>
</tr>
</tbody>
</table>
SEMESTER VII

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BM6701</td>
<td>Pattern Recognition and Neural Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BM6702</td>
<td>Medical Informatics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BM6703</td>
<td>Medical Optics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>IT6005</td>
<td>Digital Image Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Elective II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>BM6711</td>
<td>Hospital Training</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>BM6712</td>
<td>Digital Image Processing Laboratory</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>18</td>
<td>0</td>
<td>9</td>
<td>22</td>
</tr>
</tbody>
</table>

SEMESTER VIII

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BM6801</td>
<td>Rehabilitation Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>Elective IV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Elective V</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Elective VI</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>BM6811</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>18</td>
</tr>
</tbody>
</table>

TOTAL NO. OF CREDITS: 186
ELECTIVES

SEMESTER VI – Elective I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1.</td>
<td>BM6001</td>
<td>Biofluids and Dynamics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BM6002</td>
<td>Biometric Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BM6003</td>
<td>Virtual Reality</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BM6004</td>
<td>Computer Organisation</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII – Elective II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>MD6702</td>
<td>Physiological Modeling</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>BM6005</td>
<td>Bio Informatics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>GE6757</td>
<td>Total Quality Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>MD6010</td>
<td>Telehealth Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

SEMESTER VII – Elective III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>BM6006</td>
<td>Nano Electronics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>EC6703</td>
<td>Embedded and Real time Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>CS6551</td>
<td>Computer Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>12.</td>
<td>EC6601</td>
<td>VLSI Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SL. NO.</td>
<td>COURSE CODE</td>
<td>COURSE TITLE</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>BM6007</td>
<td>Internet and Java Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>14.</td>
<td>BM6008</td>
<td>Neural Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>15.</td>
<td>BM6009</td>
<td>Bio MEMS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>16.</td>
<td>BM6010</td>
<td>Assist Devices</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>17.</td>
<td>CS6003</td>
<td>Ad hoc and Sensor Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>MD6008</td>
<td>Fiber Optics and Lasers in Medicine</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>19.</td>
<td>BM6011</td>
<td>Computer Hardware and Interfacing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>20.</td>
<td>CS6012</td>
<td>Soft Computing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>21.</td>
<td>GE6075</td>
<td>Professional Ethics in Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>22.</td>
<td>MD6007</td>
<td>Body Area Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>ME6002</td>
<td>Refrigeration and Air Conditioning</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>24.</td>
<td>EC6007</td>
<td>Speech Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>25.</td>
<td>GE6078</td>
<td>Intellectual Property Rights</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>26.</td>
<td>MF6009</td>
<td>Rapid Prototyping</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>27.</td>
<td>BM6012</td>
<td>Wearable Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES:

- To enable learners of Engineering and Technology develop their basic communication skills in English.
- To emphasize specially the development of speaking skills amongst learners of Engineering and Technology.
- To ensure that learners use the electronic media such as internet and supplement the learning materials used in the classroom.
- To inculcate the habit of reading and writing leading to effective and efficient communication.

UNIT I

9+3
Listening - Introducing learners to GIE - Types of listening - Listening to audio (verbal & sounds); Speaking - Speaking about one’s place, important festivals etc. – Introducing oneself, one’s family / friend; Reading - Skimming a reading passage – Scanning for specific information - Note-making; Writing - Free writing on any given topic (My favourite place / Hobbies / School life, etc.) - Sentence completion - Autobiographical writing (writing about one’s leisure time activities, hometown, etc.); Grammar - Prepositions - Reference words - Wh-questions - Tenses (Simple); Vocabulary - Word formation - Word expansion (root words / etymology); E-materials - Interactive exercises for Grammar & Vocabulary - Reading comprehension exercises - Listening to audio files and answering questions.

UNIT II

9+3
Listening - Listening and responding to video lectures / talks; Speaking - Describing a simple process (filling a form, etc.) - Asking and answering questions - Telephone skills – Telephone etiquette; Reading – Critical reading - Finding key information in a given text - Sifting facts from opinions; Writing - Biographical writing (place, people) - Process descriptions (general/specific) - Definitions - Recommendations – Instructions; Grammar - Use of imperatives - Subject-verb agreement; Vocabulary - Compound words - Word Association (connotation); E-materials - Interactive exercises for Grammar and Vocabulary - Listening exercises with sample telephone conversations / lectures – Picture-based activities.

UNIT III

9+3
Listening - Listening to specific task - focused audio tracks; Speaking - Role-play – Simulation - Group interaction - Speaking in formal situations (teachers, officials, foreigners); Reading - Reading and interpreting visual material; Writing - Jumbled sentences - Coherence and cohesion in writing - Channel conversion (flowchart into process) - Types of paragraph (cause and effect / compare and contrast / narrative / analytical) - Informal writing (letter/e-mail/blogs) - Paraphrasing; Grammar - Tenses (Past) - Use of sequence words - Adjectives; Vocabulary - Different forms and uses of words, Cause and effect words; E-materials - Interactive exercises for Grammar and Vocabulary - Excerpts from films related to the theme and follow up exercises - Pictures of flow charts and tables for interpretations.

UNIT IV

9+3
Listening - Watching videos / documentaries and responding to questions based on them; Speaking - Responding to questions - Different forms of interviews - Speaking at different types of interviews; Reading - Making inference from the reading passage - Predicting the content of a reading passage; Writing - Interpreting visual materials (line graphs, pie charts etc.) - Essay writing – Different types of essays; Grammar - Adverbs – Tenses – future time reference; Vocabulary - Single word substitutes - Use of abbreviations and acronyms; E-materials - Interactive exercises for Grammar and Vocabulary - Sample interviews - film scenes - dialogue writing.
UNIT V
Listening - Listening to different accents, Listening to Speeches/Presentations, Listening to broadcast and telecast from Radio and TV; Speaking - Giving impromptu talks, Making presentations on given topics; Reading - Email communication - Reading the attachment files having a poem/joke/proverb - Sending their responses through email; Writing - Creative writing, Poster making; Grammar - Direct and indirect speech; Vocabulary - Lexical items (fixed / semi fixed expressions); E-materials - Interactive exercises for Grammar and Vocabulary - Sending emails with attachment – Audio / video excerpts of different accents - Interpreting posters.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
Learners should be able to:
- Speak clearly, confidently, comprehensibly, and communicate with one or many listeners using appropriate communicative strategies.
- Write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide vocabulary range, organizing their ideas logically on a topic.
- Read different genres of texts adopting various reading strategies.
- Listen/view and comprehend different spoken discourses/excerpts in different accents.

TEXTBOOKS:

REFERENCES:

EXTENSIVE Reading (Not for Examination)

WEBSITES:

TEACHING METHODS:
- Lectures
- Activities conducted individually, in pairs and in groups like self introduction, peer introduction, group poster making, grammar and vocabulary games, etc.
- Discussions
- Role play activities
- Short presentations
- Listening and viewing activities with follow up activities like discussion, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc.
EVALUATION PATTERN:

Internal assessment: 20%
3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like
- Project
- Assignment
- Reviews
- Creative writing
- Poster making, etc.

All the four skills are to be tested with equal weightage given to each.
- Speaking assessment: Individual speaking activities, Pair work activities like role play, Interview, Group discussions
- Reading assessment: Reading passages with comprehension questions graded from simple to complex, from direct to inferential
- Writing assessment: Writing paragraphs, essays etc. Writing should include grammar and vocabulary.
- Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content.

End Semester Examination: 80%

MA6151 MATHEMATICS – I

OBJECTIVES:
- To develop the use of matrix algebra techniques this is needed by engineers for practical applications.
- To make the student knowledgeable in the area of infinite series and their convergence so that he/ she will be familiar with limitations of using infinite series approximations for solutions arising in mathematical modeling.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To introduce the concepts of improper integrals, Gamma, Beta and Error functions which are needed in engineering applications.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their usage.

UNIT I MATRICES 9+3
UNIT II SEQUENCES AND SERIES

UNIT III APPLICATIONS OF DIFFERENTIAL CALCULUS
Curvature in Cartesian co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes - Evolute as envelope of normals.

UNIT IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES

UNIT V MULTIPLE INTEGRALS

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
• This course equips students to have basic knowledge and understanding in one fields of materials, integral and differential calculus.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.

UNIT I CRYSTAL PHYSICS
Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) - Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS
Elasticity- Hooke’s law - Relationship between three moduli of elasticity (qualitative) – stress -strain diagram – Poisson’s ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young’s modulus by uniform bending- I-shaped girders

UNIT III QUANTUM PHYSICS

UNIT IV ACOUSTICS AND ULTRASONICS
Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications - Sonogram

UNIT V PHOTONICS AND FIBRE OPTICS
Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TOTAL: 45 PERIODS

OUTCOMES:
The students will have knowledge on the basics of physics related to properties of matter, Optics, acoustics etc., and they will apply these fundamental principles to solve practical problems related to materials used for engineering applications
TEXT BOOKS:

REFERENCES:
1. Searls and Zemansky. University Physics, 2009

CY6151 ENGINEERING CHEMISTRY - I L T P C 3 0 0 3

OBJECTIVES:
• To make the students conversant with basics of polymer chemistry.
• To make the student acquire sound knowledge of second law of thermodynamics and second law based derivations of importance in engineering applications in all disciplines.
• To acquaint the student with concepts of important photophysical and photochemical processes and spectroscopy.
• To develop an understanding of the basic concepts of phase rule and its applications to single and two component systems and appreciate the purpose and significance of alloys.
• To acquaint the students with the basics of nano materials, their properties and applications.

UNIT I POLYMER CHEMISTRY
Introduction: Classification of polymers – Natural and synthetic; Thermoplastic and Thermosetting. Functionality – Degree of polymerization. Types and mechanism of polymerization: Addition (Free Radical, cationic and anionic); condensation and copolymerization. Properties of polymers: Tg, Tacticity, Molecular weight – weight average, number average and polydispersity index. Techniques of polymerization: Bulk, emulsion, solution and suspension. Preparation, properties and uses of Nylon 6,6, and Epoxy resin.

UNIT II CHEMICAL THERMODYNAMICS
Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal gas, reversible and irreversible processes; entropy of phase transitions; Clausius inequality. Free energy and work function: Helmholtz and Gibbs free energy functions (problems); Criteria of spontaneity; Gibbs-Helmholtz equation (problems); Clausius-Clapeyron equation; Maxwell relations – Van't Hoff isotherm and isochore (problems).

UNIT III PHOTOCHEMISTRY AND SPECTROSCOPY
UNIT IV PHASE RULE AND ALLOYS 9

UNIT V NANOCHEMISTRY 9
Basics - distinction between molecules, nanoparticles and bulk materials; size-dependent properties. nanoparticles: nano cluster, nano rod, nanotube(CNT) and nanowire. Synthesis: precipitation, thermolysis, hydrothermal, solvothermal, electrodeposition, chemical vapour deposition, laser ablation; Properties and applications

TOTAL :45 PERIODS

OUTCOMES:
- The knowledge gained on polymer chemistry, thermodynamics, spectroscopy, phase rule and nano materials will provide a strong platform to understand the concepts on these subjects for further learning.

TEXT BOOKS:

REFERENCES:

GE6151 COMPUTER PROGRAMMING L T P C
3 0 0 3

OBJECTIVES:
The students should be made to:
- Learn the organization of a digital computer.
- Be exposed to the number systems.
- Learn to think logically and write pseudo code or draw flow charts for problems.
- Be exposed to the syntax of C.
- Be familiar with programming in C.
- Learn to use arrays, strings, functions, pointers, structures and unions in C.
UNIT I INTRODUCTION 8

UNIT II C PROGRAMMING BASICS 10

UNIT III ARRAYS AND STRINGS 9

UNIT IV FUNCTIONS AND POINTERS 9

UNIT V STRUCTURES AND UNIONS 9
Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure - Union - Programs using structures and Unions – Storage classes, Pre-processor directives.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Design C Programs for problems.
- Write and execute C programs for simple applications

TEXTBOOKS:

REFERENCES:
OBJECTIVES:
• To develop in students, graphic skills for communication of concepts, ideas and design of Engineering products
• To expose them to existing national standards related to technical drawings.

CONCEPTS AND CONVENTIONS (Not for Examination)
Importance of graphics in engineering applications – Use of drafting instruments – BIS conventions and specifications – Size, layout and folding of drawing sheets – Lettering and dimensioning.

UNIT I PLANE CURVES AND FREE HAND SKETCHING 5+9
Visualization concepts and Free Hand sketching: Visualization principles –Representation of Three Dimensional objects – Layout of views- Free hand sketching of multiple views from pictorial views of objects

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES 5+9
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS 5+9
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes by rotating object method and auxiliary plane method.

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 5+9
Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids – Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+9
Principles of isometric projection – isometric scale –Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems. Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

COMPUTER AIDED DRAFTING (Demonstration Only) 3
Introduction to drafting packages and demonstration of their use.

TOTAL :75 PERIODS
OUTCOMES:
On Completion of the course the student will be able to:

- perform free hand sketching of basic geometrical constructions and multiple views of objects.
- do orthographic projection of lines and plane surfaces.
- draw projections and solids and development of surfaces.
- prepare isometric and perspective sections of simple solids.
- demonstrate computer aided drafting

TEXT BOOK:

REFERENCES:

Special points applicable to University Examinations on Engineering Graphics:
1. There will be five questions, each of either or type covering all units of the syllabus.
2. All questions will carry equal marks of 20 each making a total of 100.
3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
4. The examination will be conducted in appropriate sessions on the same day.
OBJECTIVES:
The student should be made to:
- Be familiar with the use of Office software.
- Be exposed to presentation and visualization tools.
- Be exposed to problem solving techniques and flow charts.
- Be familiar with programming in C.
- Learn to use Arrays, strings, functions, structures and unions.

LIST OF EXPERIMENTS:
1. Search, generate, manipulate data using MS office/ Open Office
2. Presentation and Visualization – graphs, charts, 2D, 3D
3. Problem formulation, Problem Solving and Flowcharts
4. C Programming using Simple statements and expressions
5. Scientific problem solving using decision making and looping.
6. Simple programming for one dimensional and two dimensional arrays.
7. Solving problems using String functions
8. Programs with user defined functions – Includes Parameter Passing
9. Program using Recursive Function and conversion from given program to flow chart.
10. Program using structures and unions.

TOTAL : 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Apply good programming design methods for program development.
- Design and implement C programs for simple applications.
- Develop recursive programs.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Standalone desktops with C compiler 30 Nos.
(or)
Server with C compiler supporting 30 terminals or more.

OBJECTIVES:
- To provide exposure to the students with hands on experience on various basic engineering practices in Civil, Mechanical, Electrical and Electronics Engineering.
GROUP A (CIVIL & MECHANICAL)

I CIVIL ENGINEERING PRACTICE

Buildings:
(a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:
(a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
(b) Study of pipe connections requirements for pumps and turbines.
(c) Preparation of plumbing line sketches for water supply and sewage works.
(d) Hands-on-exercise:

 Basic pipe connections – Mixed pipe material connection – Pipe connections with different joining components.

(e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Power Tools only:
(a) Study of the joints in roofs, doors, windows and furniture.
(b) Hands-on-exercise:

 Wood work, joints by sawing, planing and cutting.

II MECHANICAL ENGINEERING PRACTICE

Welding:
(a) Preparation of arc welding of butt joints, lap joints and tee joints.
(b) Gas welding practice

Basic Machining:
(a) Simple Turning and Taper turning
(b) Drilling Practice

Sheet Metal Work:
(a) Forming & Bending:
(b) Model making – Trays, funnels, etc.
(c) Different type of joints.

Machine assembly practice:
(a) Study of centrifugal pump
(b) Study of air conditioner

Demonstration on:
(a) Smithy operations, upsetting, swaging, setting down and bending. Example – Exercise – Production of hexagonal headed bolt.
(b) Foundry operations like mould preparation for gear and step cone pulley.
(c) Fitting – Exercises – Preparation of square fitting and vee – fitting models.
GROUP B (ELECTRICAL & ELECTRONICS)

III ELECTRICAL ENGINEERING PRACTICE 10
1. Residential house wiring using switches, fuse, indicator, lamp and energy meter.
2. Fluorescent lamp wiring.
3. Stair case wiring
5. Measurement of energy using single phase energy meter.

IV ELECTRONICS ENGINEERING PRACTICE 13
1. Study of Electronic components and equipments – Resistor, colour coding measurement of AC signal parameter (peak-peak, rms period, frequency) using CR.
2. Study of logic gates AND, OR, EOR and NOT.
4. Soldering practice – Components Devices and Circuits – Using general purpose PCB.
5. Measurement of ripple factor of HWR and FWR.

TOTAL: 45 PERIODS

OUTCOMES:
• Ability to fabricate carpentry components and pipe connections including plumbing works.
• Ability to use welding equipments to join the structures.
• Ability to fabricate electrical and electronics circuits.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

CIVIL
1. Assorted components for plumbing consisting of metallic pipes, plastic pipes, flexible pipes, couplings, unions, elbows, plugs and other fittings. 15 Sets.
2. Carpentry vice (fitted to work bench) 15 Nos.
4. Models of industrial trusses, door joints, furniture joints 5 each
5. Power Tools: (a) Rotary Hammer 2 Nos
 (b) Demolition Hammer 2 Nos
 (c) Circular Saw 2 Nos
 (d) Planer 2 Nos
 (e) Hand Drilling Machine 2 Nos
 (f) Jigsaw 2 Nos

MECHANICAL
1. Arc welding transformer with cables and holders 5 Nos.
2. Welding booth with exhaust facility 5 Nos.
3. Welding accessories like welding shield, chipping hammer, wire brush, etc. 5 Sets.
4. Oxygen and acetylene gas cylinders, blow pipe and other welding outfit. 2 Nos.
5. Centre lathe 2 Nos.
6. Hearth furnace, anvil and smithy tools 2 Sets.
7. Moulding table, foundry tools 2 Sets.
8. Power Tool: Angle Grinder 2 Nos
9. Study-purpose items: centrifugal pump, air-conditioner One each.

ELECTRICAL
1. Assorted electrical components for house wiring 15 Sets
2. Electrical measuring instruments 10 Sets
3. Study purpose items: Iron box, fan and regulator, emergency lamp 1 each
4. Megger (250V/500V) 1 No.
5. Power Tools: (a) Range Finder 2 Nos
 (b) Digital Live-wire detector 2 Nos

ELECTRONICS
1. Soldering guns 10 Nos.
2. Assorted electronic components for making circuits 50 Nos.
3. Small PCBs 10 Nos.
5. Study purpose items: Telephone, FM radio, low-voltage power supply

REFERENCES:

GE6163 PHYSICS AND CHEMISTRY LABORATORY – I

OBJECTIVES:
To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

LIST OF EXPERIMENTS
(Any FIVE Experiments)

1. (a) Determination of Wavelength, and particle size using Laser
 (b) Determination of acceptance angle in an optical fiber.
2. Determination of velocity of sound and compressibility of liquid – Ultrasonic interferometer.
3. Determination of wavelength of mercury spectrum – spectrometer grating
5. Determination of Young’s modulus by Non uniform bending method
6. Determination of specific resistance of a given coil of wire – Carey Foster’s Bridge
OUTCOMES:
The hands on exercises undergone by the students will help them to apply physics principles of optics and thermal physics to evaluate engineering properties of materials.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
1. Diode laser, lycopodium powder, glass plate, optical fiber.
2. Ultrasonic interferometer
3. Spectrometer, mercury lamp, grating
4. Lee’s Disc experimental set up
5. Traveling microscope, meter scale, knife edge, weights
6. Carey foster’s bridge set up
 (vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY-I

LIST OF EXPERIMENTS
(Any FIVE Experiments)

OBJECTIVES:
To make the student to acquire practical skills in the determination of water quality parameters through volumetric and instrumental analysis.
To acquaint the students with the determination of molecular weight of a polymer by vacometry.

1. Determination of DO content of water sample by Winkler’s method.
2. Determination of chloride content of water sample by argentometric method
3. Determination of strength of given hydrochloric acid using pH meter
4. Determination of strength of acids in a mixture using conductivity meter
5. Estimation of iron content of the water sample using spectrophotometer
 (1,10- phenanthroline / thiocyanate method)
6. Determination of molecular weight of polyvinylalcohol using Ostwald viscometer
7. Conductometric titration of strong acid vs strong base

TOTAL: 30 PERIODS

OUTCOMES:
The students will be outfitted with hands-on knowledge in the quantitative chemical analysis of water quality related parameters

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Iodine flask - 30 Nos
2. pH meter - 5 Nos
3. Conductivity meter - 5 Nos
4. Spectrophotometer - 5 Nos
5. Ostwald Viscometer - 10 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (each 30 Nos.)
REFERENCES:

HS6251 TECHNICAL ENGLISH II

OBJECTIVES:
- To make learners acquire listening and speaking skills in both formal and informal contexts.
- To help them develop their reading skills by familiarizing them with different types of reading strategies.
- To equip them with writing skills needed for academic as well as workplace contexts.
- To make them acquire language skills at their own pace by using e-materials and language lab components.

UNIT I
Listening - Listening to informal conversations and participating; Speaking - Opening a conversation (greetings, comments on topics like weather) - Turn taking - Closing a conversation (excuses, general wish, positive comment, thanks); Reading - Developing analytical skills, Deductive and inductive reasoning - Extensive reading; Writing - Effective use of SMS for sending short notes and messages - Using ‘emoticons’ as symbols in email messages; Grammar - Regular and irregular verbs - Active and passive voice; Vocabulary - Homonyms (e.g. ‘can’) - Homophones (e.g. ‘some’, ‘sum’); E-materials - Interactive exercise on Grammar and vocabulary – blogging; Language Lab - Listening to different types of conversation and answering questions.

UNIT II
Listening - Listening to situation based dialogues; Speaking - Conversation practice in real life situations, asking for directions (using polite expressions), giving directions (using imperative sentences), Purchasing goods from a shop, Discussing various aspects of a film (they have already seen) or a book (they have already read); Reading - Reading a short story or an article from newspaper, Critical reading, Comprehension skills; Writing - Writing a review / summary of a story / article, Personal letter (Inviting your friend to a function, congratulating someone for his / her success, thanking one’s friends / relatives); Grammar - modal verbs, Purpose expressions; Vocabulary - Phrasal verbs and their meanings, Using phrasal verbs in sentences; E-materials - Interactive exercises on Grammar and vocabulary, Extensive reading activity (reading stories / novels), Posting reviews in blogs - Language Lab - Dialogues (Fill up exercises), Recording students’ dialogues.

UNIT III
Listening - Listening to the conversation - Understanding the structure of conversations; Speaking - Conversation skills with a sense of stress, intonation, pronunciation and meaning - Seeking information – expressing feelings (affection, anger, regret, etc.); Reading - Speed reading – reading passages with time limit - Skimming; Writing - Minutes of meeting – format and practice in the preparation of minutes - Writing summary after reading articles from journals - Format for journal articles – elements of technical articles (abstract, introduction, methodology, results, discussion, conclusion, appendices, references) - Writing strategies; Grammar - Conditional clauses - Cause and effect expressions; Vocabulary - Words used as nouns and verbs without any change in the
spelling (e.g. ‘rock’, ‘train’, ‘ring’); E-materials - Interactive exercise on Grammar and vocabulary - Speed Reading practice exercises; Language Lab - Intonation practice using EFLU and RIE materials – Attending a meeting and writing minutes.

UNIT IV
9+3
Listening - Listening to a telephone conversation, Viewing model interviews (face-to-face, telephonic and video conferencing); Speaking - Role play practice in telephone skills - listening and responding, asking questions, note taking – passing on messages, Role play and mock interview for grasping interview skills; Reading - Reading the job advertisements and the profile of the company concerned – scanning; Writing - Applying for a job – cover letter - résumé preparation – vision, mission and goals of the candidate; Grammar - Numerical expressions - Connectives (discourse markers); Vocabulary - Idioms and their meanings – using idioms in sentences; E-materials - Interactive exercises on Grammar and Vocabulary - Different forms of résumés- Filling up a résumé / cover letter; Language Lab - Telephonic interview – recording the responses - e-résumé writing.

UNIT V
9+3
Listening - Viewing a model group discussion and reviewing the performance of each participant - Identifying the characteristics of a good listener; Speaking - Group discussion skills – initiating the discussion – exchanging suggestions and proposals – expressing dissent/agreement – assertiveness in expressing opinions – mind mapping technique; Reading - Note making skills – making notes from books, or any form of written materials - Intensive reading; Writing – Checklist - Types of reports – Feasibility / Project report – report format – recommendations / suggestions – interpretation of data (using charts for effective presentation); Grammar - Use of clauses; Vocabulary – Collocation; E-materials - Interactive grammar and vocabulary exercises - Sample GD - Pictures for discussion, Interactive grammar and vocabulary exercises; Language Lab - Different models of group discussion.

OUTCOMES:
Learners should be able to
• Speak convincingly, express their opinions clearly, initiate a discussion, negotiate, argue using appropriate communicative strategies.
• Write effectively and persuasively and produce different types of writing such as narration, description, exposition and argument as well as creative, critical, analytical and evaluative writing.
• Read different genres of texts, infer implied meanings and critically analyse and evaluate them for ideas as well as for method of presentation.
• Listen/view and comprehend different spoken excerpts critically and infer unspoken and implied meanings.

TOTAL (L:45+T:15): 60 PERIODS

TEXT BOOKS:

REFERENCES:
EXTENSIVE Reading (Not for Examination)

Websites
2. http://owl.english.purdue.edu

TEACHING METHODS:
- Lectures
- Activities conducted individually, in pairs and in groups like individual writing and presentations, group discussions, interviews, reporting, etc
- Long presentations using visual aids
- Listening and viewing activities with follow up activities like discussions, filling up worksheets, writing exercises (using language lab wherever necessary/possible) etc
- Projects like group reports, mock interviews etc using a combination of two or more of the language skills

EVALUATION PATTERN:
Internal assessment: 20%
3 tests of which two are pen and paper tests and the other is a combination of different modes of assessment like
- Project
- Assignment
- Report
- Creative writing, etc.

All the four skills are to be tested with equal weightage given to each.
- Speaking assessment: Individual presentations, Group discussions
- Reading assessment: Reading passages with comprehension questions graded following Bloom’s taxonomy
- Writing assessment: Writing essays, CVs, reports etc. Writing should include grammar and vocabulary.
- Listening/Viewing assessment: Lectures, dialogues, film clippings with questions on verbal as well as audio/visual content graded following Bloom’s taxonomy.

End Semester Examination: 80%

MA6251 MATHEMATICS – II
L T P C
3 1 0 4

OBJECTIVES:
- To make the student acquire sound knowledge of techniques in solving ordinary differential equations that model engineering problems.
- To acquaint the student with the concepts of vector calculus, needed for problems in all engineering disciplines.
- To develop an understanding of the standard techniques of complex variable theory so as to enable the student to apply them with confidence, in application areas such as heat conduction, elasticity, fluid dynamics and flow of electric current.
- To make the student appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated.
UNIT I VECTOR CALCULUS
Gradient, divergence and curl – Directional derivative – Irrotational and solenoidal vector fields – Vector integration – Green’s theorem in a plane, Gauss divergence theorem and Stokes’ theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelopipeds.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS
Higher order linear differential equations with constant coefficients – Method of variation of parameters – Cauchy’s and Legendre’s linear equations – Simultaneous first order linear equations with constant coefficients.

UNIT III LAPLACE TRANSFORM

UNIT IV ANALYTIC FUNCTIONS
Functions of a complex variable – Analytic functions: Necessary conditions – Cauchy-Riemann equations and sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping: \(w = z+k, kz, 1/z, z^2, e^z\) and bilinear transformation.

UNIT V COMPLEX INTEGRATION
Complex integration – Statement and applications of Cauchy’s integral theorem and Cauchy’s integral formula – Taylor’s and Laurent’s series expansions – Singular points – Residues – Cauchy’s residue theorem – Evaluation of real definite integrals as contour integrals around unit circle and semi-circle (excluding poles on the real axis).

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
• The subject helps the students to develop the fundamentals and basic concepts in vector calculus, ODE, Laplace transform and complex functions. Students will be able to solve problems related to engineering applications by using these techniques.

TEXT BOOKS:

REFERENCES:
PH6251 ENGINEERING PHYSICS – II

OBJECTIVES:
- To enrich the understanding of various types of materials and their applications in engineering and technology.

UNIT I CONDUCTING MATERIALS

UNIT II SEMICONDUCTING MATERIALS

UNIT III MAGNETIC AND SUPERCONDUCTING MATERIALS
- Superconductivity : properties – Type I and Type II superconductors – BCS theory of superconductivity(Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT IV DIELECTRIC MATERIALS

UNIT V ADVANCED ENGINEERING MATERIALS

TOTAL: 45 PERIODS

OUTCOMES:
The students will have the knowledge on physics of materials and that knowledge will be used by them in different engineering and technology applications

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
- To make the students conversant with boiler feed water requirements, related problems and water treatment techniques.
- Principles of electrochemical reactions, redox reactions in corrosion of materials and methods for corrosion prevention and protection of materials.
- Principles and generation of energy in batteries, nuclear reactors, solar cells, wind mills and fuel cells.
- Preparation, properties and applications of engineering materials.
- Types of fuels, calorific value calculations, manufacture of solid, liquid and gaseous fuels.

UNIT I WATER TECHNOLOGY
Introduction to boiler feed water-requirements-formation of deposits in steam boilers and heat exchangers - disadvantages (wastage of fuels, decrease in efficiency, boiler explosion) prevention of scale formation -softening of hard water -external treatment zeolite and demineralization - internal treatment- boiler compounds (phosphate, calgon, carbonate, colloidal) - caustic embrittlement-boiler corrosion-priming and foaming- desalination of brackish water –reverse osmosis.

UNIT II ELECTROCHEMISTRY AND CORROSION

UNIT III ENERGY SOURCES
Introduction- nuclear energy- nuclear fission- controlled nuclear fission- nuclear fusion- differences between nuclear fission and fusion- nuclear chain reactions- nuclear reactor power generator-classification of nuclear reactor- light water reactor- breeder reactor- solar energy conversion- solar cells- wind energy. Batteries and fuel cells:Types of batteries- alkaline battery- lead storage battery-nickel-cadmium battery- lithium battery- fuel cell H₂ -O₂ fuel cell- applications.

UNIT IV ENGINEERING MATERIALS
Abrasives: definition, classification or types, grinding wheel, abrasive paper and cloth. Refractories: definition, characteristics, classification, properties – refractoriness and RUL, dimensional stability, thermal spalling, thermal expansion, porosity; Manufacture of alumina, magnesite and silicon carbide, Portland cement- manufacture and properties - setting and hardening of cement, special cement-waterproof and white cement–properties and uses. Glass - manufacture, types, properties and uses.

UNIT V FUELS AND COMBUSTION

TOTAL: 45 PERIODS
OUTCOMES:
The knowledge gained on engineering materials, fuels, energy sources and water treatment techniques will facilitate better understanding of engineering processes and applications for further learning.

TEXT BOOKS:

REFERENCES:

EC6202 ELECTRONIC DEVICES AND CIRCUITS

OBJECTIVES:
The student should be made to:
• Be familiar with the structure of basic electronic devices.
• Be exposed to the operation and applications of electronic devices

UNIT I PN JUNCTION DEVICES
PN junction diode –structure, operation and V-I characteristics, diffusion and transient capacitance - Rectifiers – Half Wave and Full Wave Rectifier,– Display devices- LED, Laser diodes, Zener diode-characteristics-Zener Reverse characteristics – Zener as regulator

UNIT II TRANSISTORS
BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristor and IGBT - Structure and characteristics.

UNIT III AMPLIFIERS
BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response – MOSFET small signal model– Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

UNIT IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER
BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET input stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers –Types (Qualitative analysis).
UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- Explain the structure of basic electronic devices.
- Design applications using basic electronic devices

TEXT BOOKS:

REFERENCES:

EE6201 CIRCUIT THEORY

OBJECTIVES:
- To introduce electric circuits and its analysis
- To impart knowledge on solving circuits using network theorems
- To introduce the phenomenon of resonance in coupled circuits.
- To educate on obtaining the transient response of circuits.
- To Phasor diagrams and analysis of three phase circuits

UNIT I BASIC CIRCUITS ANALYSIS

UNIT II NETWORK REDUCTION AND NETWORK THEOREMS FOR DC AND AC CIRCUITS
Network reduction: voltage and current division, source transformation – star delta conversion. Thevenins and Novton & Theorem – Superposition Theorem – Maximum power transfer theorem – Reciprocity Theorem.

UNIT III RESONANCE AND COUPLED CIRCUITS
UNIT IV TRANSIENT RESPONSE FOR DC CIRCUITS 12
Transient response of RL, RC and RLC Circuits using Laplace transform for DC input and A.C. with sinusoidal input – Characterization of two port networks in terms of \(Z \), \(Y \) and \(h \) parameters.

UNIT V THREE PHASE CIRCUITS 12
Three phase balanced / unbalanced voltage sources – analysis of three phase 3-wire and 4-wire circuits with star and delta connected loads, balanced & un balanced – phasor diagram of voltages and currents – power and power factor measurements in three phase circuits.

OUTCOMES:
- Ability analyse electrical circuits
- Ability to apply circuit theorems
- Ability to analyse AC and DC Circuits

TEXT BOOKS:

REFERENCES:

GE6262 PHYSICS AND CHEMISTRY LABORATORY – II L T P C
0 0 2 1

PHYSICS LABORATORY – II

OBJECTIVES:
- To introduce different experiments to test basic understanding of physics concepts applied in optics, thermal physics and properties of matter.

(Any FIVE Experiments)
1. Determination of Young’s modulus by uniform bending method
2. Determination of band gap of a semiconductor
3. Determination of Coefficient of viscosity of a liquid – Poiseuille’s method
4. Determination of Dispersive power of a prism - Spectrometer
5. Determination of thickness of a thin wire – Air wedge method
6. Determination of Rigidity modulus – Torsion pendulum

OUTCOMES:
- The students will have the ability to test materials by using their knowledge of applied physics principles in optics and properties of matter.
LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Traveling microscope, meter scale, Knife edge, weights
2. Band gap experimental set up
3. Burette, Capillary tube, rubber tube, stop clock, beaker and weighing balance
4. spectrometer, prism, sodium vapour lamp.
5. Air-wedge experimental set up.
6. Torsion pendulum set up.
 (vernier Caliper, Screw gauge, reading lens are required for most of the experiments)

CHEMISTRY LABORATORY -II
(Any FIVE Experiments)

OBJECTIVES:
- To make the student acquire practical skills in the wet chemical and instrumental methods for quantitative estimation of hardness, alkalinity, metal ion content, corrosion in metals and cement analysis.

1. Determination of alkalinity in water sample
2. Determination of total, temporary & permanent hardness of water by EDTA method
3. Estimation of copper content of the given solution by EDTA method
4. Estimation of iron content of the given solution using potentiometer
5. Estimation of sodium present in water using flame photometer
6. Corrosion experiment – weight loss method
7. Conductometric precipitation titration using BaCl₂ and Na₂SO₄

TOTAL : 30 PERIODS

OUTCOMES:
The students will be conversant with hands-on knowledge in the quantitative chemical analysis of water quality related parameters, corrosion measurement and cement analysis.

REFERENCES:

Laboratory classes on alternate weeks for Physics and Chemistry.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

1. Potentiometer - 5 Nos
2. Flame photo meter - 5 Nos
3. Weighing Balance - 5 Nos
4. Conductivity meter - 5 Nos

Common Apparatus : Pipette, Burette, conical flask, percelain tile, dropper (30 Nos each)
OBJECTIVES:
The student should be made to:
- Be exposed to the characteristics of basic electronic devices
- Be exposed to RL and RC circuits
Be familiar with Thevinin & Norton theorem KVL & KCL, and Super Position Theorems

LIST OF EXPERIMENTS
1. Characteristics of PN Junction Diode
2. Zener diode Characteristics & Regulator using Zener diode
3. Common Emitter input-output Characteristics
4. Common Base input-output Characteristics
5. FET Characteristics
6. SCR Characteristics
7. Clipper and Clamper & FWR
8. Verifications Of Thevinin & Norton theorem
9. Verifications Of KVL & KCL
10. Verifications Of Super Position Theorem
11. Verifications of maximum power transfer & reciprocity theorem
12. Determination Of Resonance Frequency of Series & Parallel RLC Circuits
13. Transient analysis of RL and RC circuits

OUTCOMES:
At the end of the course, the student should be able to:
- Learn the characteristics of basic electronic devices
- Design RL and RC circuits
- Verify Thevinin & Norton theorem KVL & KCL, and Super Position Theorems

LABORATORY REQUIREMENTS FOR A BATCH OF 30 STUDENTS
BC 107, BC 148, 2N2646, BFW10 - 25 each
1N4007, Zener diodes - 25 each
Resistors, Capacitors, Inductors - sufficient quantities
Bread Boards - 15 Nos
CRO (30MHz) – 10 Nos.
Function Generators (3MHz) – 10 Nos.
Dual Regulated Power Supplies (0 – 30V) – 10 Nos.

MA6351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
OBJECTIVES:
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.
UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9+3
Formation of partial differential equations – Singular integrals -- Solutions of standard types of first order partial differential equations - Lagrange’s linear equation -- Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES 9+3
Dirichlet’s conditions – General Fourier series – Odd and even functions – Half range cosine series – Complex form of Fourier series – Parseval’s identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9+3
Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

UNIT IV FOURIER TRANSFORMS 9+3

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS 9+3

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
- The understanding of the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be:
- Introduced to Biochemistry
- Familiarized with the Classification, structure and properties of carbohydrates, Lipids, Protein and Enzyme.

UNIT I INTRODUCTION TO BIOCHEMISTRY 6
Introduction to Biochemistry, water as a biological solvent, weak acid and bases, pH, buffers, Handerson-Hasselbalch equation, physiological buffers, fitness of the aqueous environment for living organism . Principle of viscosity, surface tension, adsorption, diffusion, osmosis and their applications in biological systems.

UNIT II CARBOHYDRATES 9

UNIT III LIPIDS 12
Classification of lipids- simple, compound and derived lipids. Nomenclature of fatty acid, physical and chemical properties of fat. Saponification number, Reichert- Meissl number and iodine number.Metabolic pathways: synthesis and degradation of fatty acid (beta oxidation), hormonal regulation of fatty acid metabolism, ketogenesis, structural architecture and significance of biological membrane.

UNIT IV NUCLEIC ACID & PROTEIN 9

UNIT V ENZYME AND ITS KINETICS 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon Completion of the Course the students will be able to
- Explain the fundamentals of biochemistry

TEXT BOOKS:
REFERENCES:

EC6303 SIGNALS AND SYSTEMS L T P C
3 1 0 4

OBJECTIVES:
- To understand the basic properties of signal & systems and the various methods of classification
- To learn Laplace Transform & Fourier transform and their properties
- To know Z transform & DTFT and their properties
- To characterize LTI systems in the Time domain and various Transform domains

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS
Continuous time signals (CT signals) - Discrete time signals (DT signals) - Step, Ramp, Pulse, Impulse, Sinusoidal, Exponential, Classification of CT and DT signals - Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - CT systems and DT systems - Classification of systems – Static & Dynamic, Linear & Nonlinear, Time-variant & Time-invariant, Causal & Noncausal, Stable & Unstable.

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS
Fourier series analysis-spectrum of Continuous Time (CT) signals - Fourier and Laplace Transforms in CT Signal Analysis - Properties.

UNIT III LINEAR TIME INVARIANT- CONTINUOUS TIME SYSTEMS
Differential Equation - Block diagram representation - impulse response, convolution integrals - Fourier and Laplace transforms in Analysis of CT systems

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS
Baseband Sampling - DTFT – Properties of DTFT - Z Transform – Properties of Z Transform

UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS
Difference Equations - Block diagram representation - Impulse response - Convolution sum - Discrete Fourier and Z Transform Analysis of Recursive & Non-Recursive systems

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
Upon the completion of the course, students will be able to:
- Analyze the properties of signals & systems
- Apply Laplace transform, Fourier transform, Z transform and DTFT in signal analysis
- Analyze continuous time LTI systems using Fourier and Laplace Transforms
- Analyze discrete time LTI systems using Z transform and DTFT

TEXT BOOK:
REFERENCES:

OBJECTIVES:
The student should be made to:
- Understand the purpose of measurement, the methods of measurements, errors associated with measurements.
- Know the principle of transduction, classifications and the characteristics of different transducers and study its Biomedical applications.
- Know the different display and recording devices.

UNIT I SCIENCE OF MEASUREMENT

UNIT II DISPLACEMENT, PRESSURE, TEMPERATURE SENSORS
Strain Gauge: Gauge factor, sensing elements, configuration, unbounded strain gage, biomedical applications; strain gauge as displacement & pressure transducers: Capacitive transducer, Inductive transducer, LVDT, Passive types: RTD materials & range, relative resistance vs. temperature characteristics, thermistor characteristics, biomedical applications of Temperature sensors. Active type: Thermocouple – characteristics.

UNIT III PHOTOELECTRIC AND PIEZOELECTRIC SENSORS
Phototube, scintillation counter, Photo Multiplier Tube (PMT), photovoltaic, Photo conductive cells, photo diodes, phototransistor, comparison of photoelectric transducers, pectro photometric applications of photo electric transducers. Piezoelectric active transducer and biomedical applications as pressure & Ultrasound transducer.

UNIT IV SIGNAL CONDITIONING & SIGNAL ANALYSER

UNIT V DISPLAY AND RECORDING DEVICES
Digital voltmeter – Multi meter – CRO – block diagram, CRT – vertical & horizontal deflection system, DSO, LCD monitor, PMMC writing systems, servo recorders, photographic recorder, magnetic tape recorder, Inkjet recorder, thermal recorder.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the student should be able to:
- Describe the purpose and methods of measurements
- Explain different display and recording devices for various applications.
TEXT BOOK:

REFERENCES:

EC6301 OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES L T P C 3 0 0 3

OBJECTIVES:
• To comprehend the fundamentals of object oriented programming, particularly in C++.
• To use object oriented programming to implement data structures.
• To introduce linear, non-linear data structures and their applications.

UNIT I DATA ABSTRACTION & OVERLOADING 9

UNIT II INHERITANCE & POLYMORPHISM 9
Base Classes and Derived Classes – Protected Members – Casting Class pointers and Member Functions – Overriding – Public, Protected and Private Inheritance – Constructors and Destructors in derived Classes – Implicit Derived – Class Object To Base – Class Object Conversion – Composition Vs. Inheritance – Virtual functions – This Pointer – Abstract Base Classes and Concrete Classes – Virtual Destructors – Dynamic Binding.

UNIT III LINEAR DATA STRUCTURES 10
Abstract Data Types (ADTs) – List ADT – array-based implementation – linked list implementation — singly linked lists – Polynomial Manipulation - Stack ADT – Queue ADT - Evaluating arithmetic expressions

UNIT IV NON-LINEAR DATA STRUCTURES 9
UNIT V SORTING AND SEARCHING 8
Sorting algorithms: Insertion sort - Quick sort - Merge sort - Searching: Linear search –Binary Search

OUTCOMES:
Upon completion of the course, students will be able to:
- Explain the concepts of Object oriented programming.
- Write simple applications using C++.
- Discuss the different methods of organizing large amount of data.

TEXT BOOKS:

REFERENCES:

BM6303 ANATOMY AND HUMAN PHYSIOLOGY L T P C
3 0 0 3

OBJECTIVES:
The student should be made to:
- Know basic structural and functional elements of human body.
- Learn organs and structures involving in system formation and functions.
- Understand all systems in the human body.

UNIT I BASIC ELEMENTS OF HUMAN BODY 8

UNIT II SKELETAL AND RESPIRATORY SYSTEM 9

UNIT III CIRCULATORY SYSTEM 10
UNIT IV URINARY AND SPECIAL SENSORY SYSTEM 9

UNIT V NERVOUS SYSTEM 9

TOTAL: 45 PERIODS

OUTCOMES:
The student will have knowledge to:
• Describe basic structural and functional elements of human body.
• Explain organs and structures involving in system formation and functions.
• Identify all systems in the human body.

TEXT BOOK:

REFERENCES:
1. Gillian Pocock, Christopher D. Richards, The human Body – An introduction for Biomedical and Health Sciences, Oxford University Press, USA, 2009

BM6311 BIOCHEMISTRY AND HUMAN PHYSIOLOGY LABORATORY L T P C

OBJECTIVES:
To provide practice on:
• Estimation and quantification of biomolecules.
• Separation of macromolecules.

LIST OF EXPERIMENTS:
1. General tests for carbohydrates, proteins and lipids.
2. Preparation of serum and plasma from blood.
3. Estimation of blood glucose.
4. Estimation of creatinine
5. Estimation of urea
6. Estimation of cholesterol
7. Assay of SGOT/SGPT
8. Separation of proteins by SDS electrophoresis
9. Separation of amino acids by thin layer chromatography
10. Separation of DNA by agarose gel electrophoresis
11. ESR , PCV, MCH , MCV ,MCHC , total count of RBCs and hemoglobin estimation
OUTCOMES:
Upon completion of the course, students will be able to:
 • Do estimation and interpret the changes in biomolecules.
 • Separate and analyze the importance of macromolecules.

LAB REQUIREMENT FOR A BATCH OF 30 STUDENTS:

Requirement for a batch of 30 students

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrophotometer</td>
<td>1 No</td>
</tr>
<tr>
<td>Colorimeter</td>
<td>2 Nos.</td>
</tr>
<tr>
<td>pH meter</td>
<td>1 No</td>
</tr>
<tr>
<td>Weighing balance</td>
<td>1 No</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>1 No</td>
</tr>
<tr>
<td>Vortex Shaker</td>
<td>2 Nos.</td>
</tr>
<tr>
<td>SDS gel electrophoresis</td>
<td>1 No</td>
</tr>
<tr>
<td>TLC, ready TLC plates</td>
<td>1 No</td>
</tr>
<tr>
<td>Wintrobe’s tube</td>
<td>2 Nos.</td>
</tr>
<tr>
<td>Centrifuge Normal</td>
<td>1 No</td>
</tr>
<tr>
<td>Centrifuge Cooling</td>
<td>1 No</td>
</tr>
<tr>
<td>Microslides</td>
<td>2 packets</td>
</tr>
<tr>
<td>Lancet</td>
<td>5 boxes</td>
</tr>
<tr>
<td>Microscope</td>
<td>1 No</td>
</tr>
<tr>
<td>Neubaur’s Chamber</td>
<td>2 Nos.</td>
</tr>
<tr>
<td>Heparinized Syringe</td>
<td>1 box</td>
</tr>
<tr>
<td>Haemoglobinometer</td>
<td>1 No</td>
</tr>
<tr>
<td>Capillary tubes</td>
<td>1 box</td>
</tr>
<tr>
<td>Ophthalmoscope (direct & Indirect)</td>
<td>1 No</td>
</tr>
<tr>
<td>Tuning fork (256Hz to 512Hz)</td>
<td>5 Nos.</td>
</tr>
<tr>
<td>Blood grouping kit</td>
<td>1 No</td>
</tr>
</tbody>
</table>

TOTAL : 45 PERIODS

BM6312 OOPS AND DATA STRUCTURES LABORATORY L T P C 0 0 3 2

OBJECTIVES:
The student should be made to:
 • Learn C++ programming language.
 • Be exposed to the different data structures
 • Be familiar with applications using different data structures

LIST OF EXPERIMENTS:
1. Basic Programs for C++ Concepts
2. Array implementation of List Abstract Data Type (ADT)
3. Linked list implementation of List ADT
4. Cursor implementation of List ADT
5. Stack ADT - Array and linked list implementations
6. The next two exercises are to be done by implementing the following source files
 i. Program source files for Stack Application 1
 ii. Array implementation of Stack ADT
iii. Linked list implementation of Stack ADT
iv. Program source files for Stack Application 2
v. An appropriate header file for the Stack ADT should be included in (i) and (iv)
7. Implement any Stack Application using array implementation of Stack ADT (by implementing files (i) and (ii) given above) and then using linked list
8. Implementation of Stack ADT (by using files (i) and implementing file (iii))
9. Implement another Stack Application using array and linked list implementations of Stack ADT (by implementing files (iv) and using file (ii), and then by using files (iv) and (iii))
11. Queue ADT – Array and linked list implementations
12. Search Tree ADT - Binary Search Tree
13. Implement an interesting application as separate source files and using any of the searchable ADT files developed earlier. Replace the ADT file alone with other appropriate ADT files. Compare the performance.
14. Quick Sort

TOTAL: 45 PERIODS

REFERENCE:
spoken-tutorial.org.

OUTCOMES:
At the end of the course, the student should be able to:
- Design and implement C++ programs for manipulating stacks, queues, linked lists, trees, and graphs.
- Apply good programming design methods for program development.
- Apply the different data structures for implementing solutions to practical problems.

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:
Standalone desktops with C++ compiler 30 Nos.
(or)
Server with C++ compiler supporting 30 terminals or more.

MA6451 PROBABILITY AND RANDOM PROCESSES L T P C
3 1 0 4

OBJECTIVES
To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems etc in communication engineering.

UNIT I RANDOM VARIABLES 9+3
Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions.

UNIT II TWO - DIMENSIONAL RANDOM VARIABLES 9+3
Joint distributions – Marginal and conditional distributions – Covariance – Correlation and Linear regression – Transformation of random variables.
UNIT III RANDOM PROCESSES 9+3
Classification – Stationary process – Markov process - Poisson process – Random telegraph process.

UNIT IV CORRELATION AND SPECTRAL DENSITIES 9+3

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS 9+3
Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and Cross correlation functions of input and output.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
The students will have an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable. Able to analyze the response of random inputs to linear time invariant systems.

TEXT BOOKS:

REFERENCES:

BM6401 MEDICAL PHYSICS L T P C
3 0 0 3

OBJECTIVES:
• To Study effects of sound and light in human body
• To study effects of radiation in matter and how isotopes are produced

UNIT I NON IONIZING RADIATION AND ITS MEDICAL APPLICATION 9

UNIT II SOUND IN MEDICINE 9
Physics of sound, Normal sound levels –ultrasound fundamentals – Generation of ultrasound (Ultrasound Transducer) - Interaction of Ultrasound with matter; Cavitations, Reflection, Transmission-Scanning systems – Artefacts- Ultrasound- Doppler-Double Doppler shift-Clinical Applications
UNIT III PRINCIPLES OF RADIOACTIVE NUCLIDES
Radioactive Decay – Spontaneous Emission – Isometric Transition – Gamma ray emission, alpha, beta, Positron decay, electron capture, Sources of Radioisotopes Natural and Artificial radioactivity, Radionuclide used in Medicine and Technology , Decay series, Production of radionuclides – Cyclotron produced Radionuclide- Reactor produced Radio- nuclide-fission and electron Capture reaction, radionuclide Generator-Technetium generator.

UNIT IV INTERACTION OF RADIATION WITH MATTER

UNIT V BASIC RADIATION QUANTITIES
Introduction - exposure- Inverse square law-KERMA-Kerma and absorbed dose – stopping power - relationship between the dosimetric quantities - Bremsstrahlung radiation, Bragg’s curve- concept of LD 50- Stochastic and Non-stochastic effects, Different radiation Unit, Roentgen, gray, Sievert.

OUTCOMES:
At the end of the course, the student should be able to:
- Analyze mechanics involved with various physiological systems.
- Perform derivation of mathematical models related to blood vessels

TEXT BOOKS:

REFERENCES:
3. J.P.Woodcock, Ultrasonic,Medical Physics Handbook series 1, Adam Hilger, Bristol, 2002

BM6402
OBJECTIVES:
The student should be made to Understand:
- Magnetic circuits, principle and application of transformers
- Principle of operation of DC motors and AC Machines
- Principle of fractional-kW motors and their applications.

UNIT I INDUCTION THEORY
Magnetic effects of electric current- Magnetic circuits- Magnetic materials and B-H relationship – Electromagnetic induction and force – Hysteresis and eddy current losses
UNIT II TRANSFORMER

UNIT III DC MACHINES

UNIT IV INDUCTION MACHINES AND SYNCHRONOUS MACHINES

UNIT V FRACTIONAL KILOWATT MOTORS

OUTCOMES:
At the end of the course, the student should be able to:
• Describe principles and applications of transformers.
• Explain the working of DC Motors, fractional kW motors, AC machines.

TEXT BOOKS:

REFERENCE:

BM6403 ANALOG AND DIGITAL ICs L T P C 3 1 0 4

OBJECTIVES:
• To study the application of analog ICs in the designing circuit.
• To study the applications of these Digital ICs.
• To understand the basic of the Digital systems.
• To study the design of the various functional circuits using these ICs.
UNIT I NUMBER SYSTEMS AND LOGIC GATES

UNIT II REGISTERS AND COUNTERS

UNIT III OPERATIONAL AMPLIFIERS

UNIT IV ACTIVE FILTERS AND SIGNAL GENERATOR
Active filters (first and second order) – Low pass, high pass, band pass filters, band reject filters (notch filters). Oscillators - RC Phase shift and Wein-bridge. Waveform generators - Square, triangular and saw tooth.

UNIT V TIMER, PLL, A/D AND D/A CONVERTERS
555 Timer (internal diagram) and its applications – monostable multivibrator, astable multivibrator. Phase locked Loop (565 - block diagram approach) and its applications - Frequency multiplication, Frequency translation, voltage to frequency and frequency to voltage converters. DAC – Binary weighted DAC and R-2R DAC. ADC – single slope and dual slope ADCs, successive approximation ADC

OUTCOMES:
The student is able to:
- Explain the application of analog ICs in the designing circuit.
- Do applications of Digital ICs.
- Understand the basic of the Digital systems.
- Design various functional circuits using these ICs.

TEXT BOOKS:
REFERENCES:

BM6404 PATHOLOGY AND MICROBIOLOGY

OBJECTIVES:
The student should be made to:
• Gain a knowledge on the structural and functional aspects of living organisms.
• Know the etiology and remedy in treating the pathological diseases.
• Empower the importance of public health.

UNIT I CELL DEGENERATION, REPAIR AND NEOPLASIA
Cell injury and Necrosis, Apoptosis, Intracellular accumulations, Pathological calcification, cellular adaptations of growth and differentiation, Inflammation and Repair including fracture healing, Neoplasia, Classification, Benign and Malignant tumours, carcinogenesis, spread of tumours. Autopsy and biopsy.

UNIT II FLUID AND HEMODYNAMIC DERRANGEMENTS

UNIT III MICROSCOPES

UNIT IV MICROBIAL CULTURES
Morphological features and structural organization of bacteria, growth curve, identification of bacteria, culture media and its types, culture techniques and observation of culture.

UNIT V IMMUNOLOGY
Natural and artificial immunity, opsonization, phagocytosis, inflammation, Immune deficiency syndrome, antibodies and its types, antigen and antibody reactions, immunological techniques: immune diffusion, immuno electrophoresis, RIA and ELISA, monoclonal antibodies. Disease caused by bacteria, fungi, protozoal, virus and helminthes.

OUTCOMES:
At the end of the course, the student should be able to:
• Analyze structural and functional aspects of living organisms.
• Explain the function of microscope
• Discuss the importance of public health.
• Describe methods involved in treating the pathological diseases.
TEXT BOOKS:

REFERENCES:

CS6304 ANALOG AND DIGITAL COMMUNICATION L T P C
3 0 0 3

OBJECTIVES:
The student should be made to:
- Understand analog and digital communication techniques
- Learn data and pulse communication techniques
- Be familiarized with source and Error control coding
- Gain knowledge on multi-user radio communication

UNIT I ANALOG COMMUNICATION

UNIT II DIGITAL COMMUNICATION

UNIT III DATA AND PULSE COMMUNICATION

UNIT IV SOURCE AND ERROR CONTROL CODING
Entropy, Source encoding theorem, Shannon fano coding, Huffman coding, mutual information, channel capacity, channel coding theorem, Error Control Coding, linear block codes, cyclic codes, convolution codes, viterbi decoding algorithm

UNIT V MULTI-USER RADIO COMMUNICATION
Advanced Mobile Phone System (AMPS) - Global System for Mobile Communications (GSM) - Code division multiple access (CDMA) – Cellular Concept and Frequency Reuse - Channel Assignment and Hand off - Overview of Multiple Access Schemes - Satellite Communication - Bluetooth.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
- Apply analog and digital communication techniques
- Use data and pulse communication techniques
- Analyze Source and Error control coding
- Utilize multi-user radio communication

TEXT BOOK:

REFERENCES:

BM6411 CIRCUITS AND IC’S LABORATORY

OBJECTIVES:
The student should be made to:
- Design digital logic and circuits
- Learn the function of different ICs
- Understand the applications of operation amplifier.
- Learn the working of multivibrators
- Design circuits for generating waveforms using ICs.

LIST OF EXPERIMENTS:
1. Study of logic gates, Half adder and Full adder
2. Encoder and BCD to 7 segment decoder
3. Multiplexer and demultiplexer using digital ICs
4. Universal shift register using flip flops
5. Design of mod-N counter
6. Inverting, non-inverting amplifier and comparator
7. Integrator and Differentiator
8. Active filter – first order and second order LPF and HPF
9. Current to Voltage convertor and Voltage to Current Convertor
10. Comparator, Peak detector and Average detector
11. Instrumentation amplifier using IC741
12. Wein bridge oscillator
13. Multivibrator using IC555 Timer
14. Timer
15. Phase Lock Loop
16 A/D and D/A convertor

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:

- Design Circuits using logic gates
- Build Circuits for different application using opamp
- Differentiate between oscillator and waveform generator
- Convert Signals from Analog to Digital Vice versa

LAB EQUIPMENTS FOR A BATCH OF 30 STUDENTS:
1. Digital Trainer Kit - 15 Nos.
 (with 5 V, Variable and fixed frequency Clock, Bread Board, Four Seven Segment displays, LEDs for output display, Logic 1 and 0 Input switches)
2. Logic ICs - 50Nos each
 (7400, 7402, 7404, 7408, 7410, 7420, 7432, 7447, 7448, 7474, 7476, 7483, 7485, 7486, 7490, 7495, 74151, 741 Common Anode and cathode 7-segment displays, LEDs)
3. NE555 – 50 nos
4. PLL - 50 nos
5. A/D and D/A convertors – 50 nos
6. Resistors - 50 nos
7. Capacitors - 50 nos
8. IC Power supply (5 V fixed) - 15 Nos
9. Bread Boards - 15 Nos

BM6412 PATHOLOGY AND MICROBIOLOGY LABORATORY

OBJECTIVES:
The student should be made to:

- Use Compound microscope
- Practice on chemical examinations, Cryoprocessing, Histopathological examinations etc

LIST OF EXPERIMENTS:
1. Urine physical and chemical examination (protein, reducing substances, ketones, bilirubin and blood)
2. Study of parts of compound microscope
3. Histopathological slides of benign and malignant tumours.
4. Manual paraffin tissue processing and section cutting (demonstration)
5. Cryo processing of tissue and cryosectioning (demonstration)
6. Basic staining – Hematoxylin and eosin staining.
7. Special stains – cresyl fast Blue (CFV)- Trichrome – oil red O – PAS
8. Simple stain.
10. AFB stain.
11. Slides of malarial parasites, micro filaria and leishmania donovani.
13. Bleeding time and clotting time.

TOTAL : 45 PERIODS

OUTCOMES:
- Student can perform practical experiments on tissue processing, cryoprocessing, staining processes etc.

LAB EQUIPMENTS FOR 30 STUDENTS:
- Wax dispenser 1 No
- Slide warming 1 No
- Microtome 1 No
- Microscope 1 No
- Microphotographic unit 1 No
- Slides 1 box
- Coverslip 1 box
- Distillation Unit 1 No
- Water bath normal 1 No
- Incubator 1 No
- Autoclave 1 No
- Oven 1 No

BM6501 BIO CONTROL SYSTEMS

OBJECTIVES:
- To study the concept and different mathematical techniques applied in analyzing any given system
- To learn the analysis of given system in time domain and frequency domain
- To study the stability analysis of the given system
- To study the concept of physiological control system

UNIT I MODELING OF SYSTEMS
Terminology and basic structure of control system, example of a closed loop system, transfer functions, modeling of electrical systems, translational and rotational mechanical systems, and electro mechanical systems, block diagram and signal flow graph representation of systems, conversion of block diagram to signal flow graph, reduction of block diagram and signal flow graph

UNIT II TIME RESPONSE ANALYSIS
Step and impulse responses of first order and second order systems, determination of time domain specifications of first and second order systems from its output responses, definition of steady state error constants and its computations.

UNIT III STABILITY ANALYSIS
Definition of stability, Routh- Hurwitz criteria of stability, root locus technique, construction of root locus and study of stability, definition of dominant poles and relative stability.
UNIT IV FREQUENCY RESPONSE ANALYSIS
Frequency response, Nyquist stability criterion, Nyquist plot and determination of closed loop stability, definition of gain margin and phase margin, Bode plot, determination of gain margin and phase margin using Bode plot, use of Nichol’s chart to compute response frequency and bandwidth.

UNIT V PHYSIOLOGICAL CONTROL SYSTEM
Example of physiological control system, difference between engineering and physiological control systems, generalized system properties, models with combination of system elements, linear models of physiological systems-Examples, introduction to simulation.

OUTCOMES:
The learner will be able to:
• Analyze the time and frequency domains of the given system using different mathematical techniques

TEXT BOOKS:

REFERENCES:

BM6502 DIAGNOSTIC AND THERAPEUTIC EQUIPMENT- I

OBJECTIVES:
The student should be made to:
• Understand the medical devices applied in measurement of parameters related to cardiology, neurology and the methods of continuous monitoring and transmitting them
• Learn some of the cardiac assist devices
• Learn to measure the signals generated by muscles
• Understand the need and use of some of the extracorporeal devices

UNIT I CARDIAC EQUIPMENT
Electrocardiograph, Normal and Abnormal Waves, Heart rate monitor, Holter Monitor, Phonocardiography, Plethysmography. Cardiac Pacemaker- Internal and External Pacemaker– Batteries, AC and DC Defibrillator- Internal and External

UNIT II NEUROLOGICAL EQUIPMENT
Clinical significance of EEG, Multi channel EEG recording system, Epilepsy, Evoked Potential–Visual, Auditory and Somatosensory, MEG (Magneto Encephalo Graph). EEG Bio Feedback Instrumentation.
UNIT III SKELETAL MUSCULAR EQUIPMENT 9
Generation of EMG, recording and analysis of EMG waveforms, fatigue characteristics, Muscle
stimulators, nerve stimulators, Nerve conduction velocity measurement, EMG Bio Feedback
Instrumentation.

UNIT IV PATIENT MONITORING AND BIOTELEMETRY 9
Patient monitoring systems, ICU/CCU Equipments, Infusion pumps, bed side monitors, Central
consoling controls. Radio Telemetry (single, multi), Portable and Landline Telemetry unit, Applications
in ECG and EEG Transmission.

UNIT V EXTRA CORPOREAL DEVICES AND SPECIAL DIAGNOSTIC
TECHNIQUES 9
Need for heart lung machine, functioning of bubble, disc type and membrane type oxygenerators,
finger pump, roller pump, electronic monitoring of functional parameter. Hemo Dialyser unit,
Lithotripsly, Principles of Cryogenic technique and application, Endoscopy, Laproscopy,
Thermography – Recording and clinical application, opthalmic instruments.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Use different medical devices applied in measurement of parameters related to cardiology,
 neurology
- Explain about cardiac assist devices, its continuous monitoring and transmission
- Measure signals generated by muscles

TEXT BOOK:

REFERENCES:
3. Leslie Cromwell, “Biomedical Instrumentation and Measurement”, Pearson Education, New Delhi,
 2007.
 Publisher Ltd, Illinois, USA, 2008.
6. John G.Webster, “Medical Instrumentation Application and Design”, third edition, John Wiley and
UNIT I STRUCTURE OF BIO-MATERIALS AND BIO-COMPATIBILITY 9
Definition and classification of bio-materials, mechanical properties, visco elasticity, wound healing process, body response to implants, blood compatibility.

UNIT II IMPLANT MATERIALS 9
Metallic implant materials, stainless steels, co-based alloys, Ti-based alloys, ceramic implant materials, aluminum oxides, hydroxyapatite, glass ceramics, carbons, medical applications.

UNIT III POLYMERIC IMPLANT MATERIALS 9

UNIT IV TISSUE REPLACEMENT IMPLANTS 9
Small intestinal submucosa and other decellularized matrix biomaterials for tissue repair. Softtissue replacements, sutures, surgical tapes, adhesive, Percutaneous and skin implants, maxillofacial augmentation, Vascular grafts, hard tissue replacement Implants, joint replacements, Pancreas replacement.

UNIT V ARTIFICIAL ORGANS 9
Artificial blood, Artificial skin, Artificial Heart, Prosthetic Cardiac Valves, Artificial lung (oxygenator), Artificial Kidney (Dialyser membrane), Dental Implants.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:

- Analyze different types of Biomaterials and its classification.
- Perform combinations of materials that could be used as a tissue replacement implant.

TEXT BOOK:

REFERENCES:

BM6504 BIOMEDICAL INSTRUMENTATION L T P C
3 0 0 3

OBJECTIVES:
The students will be exposed to electrical and non-electrical physiological measurements and bioamplifiers.
UNIT I BIO POTENTIAL ELECTRODES 9

UNIT II ELECTRODE CONFIGURATIONS 9
Biosignals characteristics – frequency and amplitude ranges. ECG – Einthoven’s triangle, standard 12 lead system. EEG – 10-20 electrode system, unipolar, bipolar and average mode. EMG– unipolar and bipolar mode.

UNIT III BIO AMPLIFIER 8

UNIT IV MEASUREMENT OF NON-ELECTRICAL PARAMETERS 10

UNIT V BIO-CHEMICAL MEASUREMENT 9
Biochemical sensors - pH, pO2 and pCO2, Ion selective Field effect Transistor (ISFET), Immunologically sensitive FET (IMFET), Blood glucose sensors - Blood gas analyzers, colorimeter, flame photometer, spectrophotometer, blood cell counter, auto analyzer (simplified schematic description).

OUTCOMES:
At the end of the course, the student should be able to:
• Perform electrical and non-electrical physiological measurements
• Explain the function of bio amplifiers.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be made to:
- Study the Architecture of 8086 microprocessor.
- Learn the design aspects of I/O and Memory Interfacing circuits.
- Study about communication and bus interfacing.
- Study the Architecture of 8051 microcontroller.

UNIT I THE 8086 MICROPROCESSOR
Introduction to 8086 – Microprocessor architecture – Addressing modes - Instruction set and assembler directives – Assembly language programming – Modular Programming - Linking and Relocation - Stacks - Procedures – Macros – Interrupts and interrupt service routines – Byte and String Manipulation.

UNIT II 8086 SYSTEM BUS STRUCTURE

UNIT III I/O INTERFACING

UNIT IV MICROCONTROLLER
Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

UNIT V INTERFACING MICROCONTROLLER

OUTCOMES:
At the end of the course, the student should be able to:
- Design and implement programs on 8086 microprocessor.
- Design I/O circuits.
- Design Memory Interfacing circuits.
- Design and implement 8051 microcontroller based systems.

TEXT BOOKS:

REFERENCE:
1. Doughlas V.Hall, “Microprocessors and Interfacing, Programming and Hardware;,,TMH,2012
OBJECTIVES:
The student should be made to:
Understand the principles, practices and areas of application in Hospital management.

UNIT I
OVERVIEW OF HOSPITAL ADMINISTRATION
Distinction between Hospital and Industry, Challenges in Hospital Administration – Hospital Planning – Equipment Planning – Functional Planning - Current Issues in Hospital Management - Telemedicine - Bio-Medical Waste Management

UNIT II
HUMAN RESOURCE MANAGEMENT IN HOSPITAL

UNIT III
MARKETING RESEARCH & CONSUMER BEHAVIOUR
Marketing information systems - assessing information needs, developing & disseminating information - Market Research process - Other market research considerations – Consumer Markets & Consumer Buyer Behaviour - Model of consumer behaviour - Types of buying decision behaviour - The buyer decision process - Model of business buyer behaviour – Major types of buying situations - global marketing in the medical sector - WTO and its implications

UNIT IV
HOSPITAL INFORMATION SYSTEMS & SUPPORTIVE SERVICES

UNIT V
QUALITY AND SAFETY ASPECTS IN HOSPITAL

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
• Explain the principles, practices and areas of application in Hospital Management.

TEXT BOOKS:

REFERENCES:

BM6511 MICROPROCESSOR AND MICROCONTROLLER LABORATORY

OBJECTIVES:
The student should be made to:
- Introduce ALP concepts and features
- Write ALP for arithmetic and logical operations in 8086 and 8051
- Differentiate Serial and Parallel Interface
- Interface different I/Os with Microprocessors
- Be familiar with MASM

LIST OF EXPERIMENTS:

8086 Programs using kits and MASM
1. Basic arithmetic and Logical operations
2. Move a data block without overlap
3. Code conversion, decimal arithmetic and Matrix operations.
4. Floating point operations, string manipulations, sorting and searching
5. Password checking, Print RAM size and system date
6. Counters and Time Delay

Peripherals and Interfacing Experiments
7. Traffic light control
8. Stepper motor control
9. Digital clock
10. Keyboard and Display
11. Printer status
12. Serial interface and Parallel interface
13. A/D and D/A interface and Waveform Generation

8051 Experiments using kits and MASM
14. Basic arithmetic and Logical operations
15. Square and Cube program, Find 2’s complement of a number
16. Unpacked BCD to ASCII

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Write ALP Programmes for fixed and Floating Point and Arithmetic
- Interface different I/Os with processor
- Generate waveforms using Microprocessors
- Execute Programs in 8051
- Explain the difference between simulator and Emulator
LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS:

HARDWARE:
- 8086 development kits: 30 nos
- Interfacing Units: Each 10 nos
- Microcontroller: 30 nos

SOFTWARE:
- Intel Desktop Systems with MASM: 30 nos
- 8086 Assembler
- 8051 Cross Assembler

BM6512 BIO MEDICAL INSTRUMENTATION LABORATORY L T P C
0 0 3 2

OBJECTIVES:
- To provide hands on training on Measurement of physiological parameters, biochemical parameters measurement and biosignal analysis.

LIST OF EXPERIMENTS:
1. Design and analysis of biological pre amplifiers
2. Recording of ECG signal and analysis
3. Recording of EMG-Signal
4. Recording of EEG-Signal
5. Recording of various physiological parameters using patient monitoring system and telemetry units.
7. Measurement and recording of peripheral blood flow
9. Study of characteristics of optical Isolation amplifier
10. Galvanic skin resistance (GSR) measurement

TOTAL: 45 PERIODS

LAB REQUIREMENTS FOR A BATCH OF 30 STUDENTS:
- Multiparameter patient monitoring system: 1 No.
- EEG recorder with accessories for evoked studies: 1 No.
- ECG recorder: 1 No.
- EMG recorder: 1 No.
- pH meter, conductivity meter: 1 No.
- Blood flow measurement system using ultrasound transducer: 1 No.
- GSR measurement setup: 1 No.
- Function Generators
- DSOs
- Regulated Power supplies
- Bread boards
- IC 741

OUTCOMES:
Student is able to:
- Design the amplifier for Bio signal measurements
- Recording and analysis of bio signals
OBJECTIVES:
- To enable learners to develop their communicative competence.
- To facilitate them to hone their soft skills.
- To equip them with employability skills to enhance their prospect of placements.

UNIT I LISTENING AND SPEAKING SKILLS
Conversational skills (formal and informal) – group discussion and interview skills – making presentations.
Listening to lectures, discussions, talk shows, news programmes, dialogues from TV/radio/Ted talk/Podcast – watching videos on interesting events on Youtube.

UNIT II READING AND WRITING SKILLS
Reading different genres of tests ranging from newspapers to philosophical treatises – reading strategies such as graphic organizers, summarizing and interpretation.

UNIT III ENGLISH FOR NATIONAL AND INTERNATIONAL EXAMINATIONS AND PLACEMENTS
International English Language Testing System (IELTS) – Test of English as a Foreign Language (TOEFL) – Graduate Record Examination (GRE) – Civil Service (Language related) – Verbal ability.

UNIT IV SOFT SKILLS (1)

UNIT V SOFT SKILLS (2)
Multiple intelligences – emotional intelligence – spiritual quotient (ethics) – intercultural communication – creative and critical thinking – learning styles and strategies.

TOTAL: 60 PERIODS

TEACHING METHODS:
1. To be totally learner-centric with minimum teacher intervention as the course revolves around practice.
2. Suitable audio/video samples from Podcast/YouTube to be used for illustrative purposes.
3. Portfolio approach for writing to be followed. Learners are to be encouraged to blog, tweet, text and email employing appropriate language.
4. GD/Interview/Role Play/Debate could be conducted off the laboratory (in a regular classroom) but learners are to be exposed to telephonic interview and video conferencing.
5. Learners are to be assigned to read/write/listen/view materials outside the classroom as well for graining proficiency and better participation in the class.

LAB INFRASTRUCTURE:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Description of Equipment (minimum configuration)</th>
<th>Qty Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Server</td>
<td>1 No.</td>
</tr>
<tr>
<td></td>
<td>• PIV System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1 GB RAM / 40 GB HDD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• OS: Win 2000 server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Audio card with headphones</td>
<td></td>
</tr>
</tbody>
</table>
EVALUATION:

INTERNAL: 20 MARKS
Record maintenance: Students should write a report on a regular basis on the activities conducted, focusing on the details such as the description of the activity, ideas emerged, learning outcomes and so on. At the end of the semester records can be evaluated out of 20 marks.

EXTERNAL: 80 MARKS
Online Test - 35 marks
Interview - 15 marks
Presentation - 15 marks
Group Discussion - 15 marks

NOTE ON INTERNAL AND EXTERNAL EVALUATION:
1. Interview – mock interview can be conducted on one-on-one basis.
2. Speaking – example for role play:
 a. Marketing engineer convincing a customer to buy his product.
 b. Telephonic conversation- fixing an official appointment / placing an order / enquiring and so on.
3. Presentation – should be extempore on simple topics.
4. Discussion – topics of different kinds; general topics, case studies and abstract concept.

OUTCOMES:
At the end of the course, learners should be able to
• Take international examination such as IELTS and TOEFL
• Make presentations and Participate in Group Discussions.
• Successfully answer questions in interviews.

REFERENCES:
2. Graded Examinations in Spoken English and Spoken English for Work downloadable materials from Trinity College, London.
3. Interactive Multimedia Programs on Managing Time and Stress.
WEB SOURCES:
http://www.slideshare.net/rohitjsh/presentation-on-group-discussion
http://www.washington.edu/doit/TeamN/present_tips.html
http://www.oxforddictionaries.com/words/writing-job-applications
http://www.kent.ac.uk/careers/cv/coveringletters.htm
http://www.mindtools.com/pages/article/newCDV_34.htm

<table>
<thead>
<tr>
<th>BM6601</th>
<th>RADIOLOGICAL EQUIPMENT</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

OBJECTIVES:
The student should be made to:
- Understand generation of x-rays and its uses in imaging.
- Learn different types of radio diagnostic techniques.
- Know techniques used for visualizing different sections of the body.
- Learn radiation therapy methodologies and the radiation safety.

UNIT I MEDICAL X-RAY EQUIPMENT

UNIT II COMPUTED TOMOGRAPHY

UNIT III MAGNETIC RESONANCE IMAGING
Fundamentals of magnetic resonance- Interaction of Nuclei with static magnetic field and Radio frequency wave- rotation and precession – Induction of magnetic resonance signals – bulk magnetization – Relaxation processes T1 and T2. Block Diagram approach of MRI system- system magnet (Permanent, Electromagnet and Super conductors), generations of gradient magnetic fields, Radio Frequency coils (sending and receiving), shim coils, Electronic components, fMRI.

UNIT IV NUCLEAR MEDICINE SYSTEM

UNIT V RADIATION THERAPY AND RADIATION SAFETY

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
- Explain the different radio diagnostic and therapeutic techniques.

TEXT BOOKS:

REFERENCES:
4. P.Ragunathan, “Magnetic Resonance Imaging and Spectroscopy in Medicine

BM6602 BIOMECHANICS

OBJECTIVES:
The student should be made to:
- Be exposed to principles of mechanics.
- Learn the mechanics of physiological systems.
- Be familiar with the mathematical models used in the analysis of biomechanical systems

UNIT I INTRODUCTION TO MECHANICS

UNIT II BIOFLUID MECHANICS
Introduction, viscosity and capillary viscometer, Rheological properties of blood, laminar flow, Couette flow and Hagen-poiseuille equation, turbulent flow. Cardiovascular system - biological and mechanical valves development, artificial heart valves testing of valves, Structure, functions, material properties and modeling of Blood vessels.

UNIT III BIOSOLID MECHANICS
Hard Tissues: Bone structure & composition mechanical properties of bone, cortical and cancellous bones, viscoelastic properties, Maxwell & Voight models – anisotropy.

UNIT IV BIOMECHANICS OF JOINTS AND IMPLANTS
Skeletal joints, forces and stresses in human joints, Analysis of rigid bodies in equilibrium, free body diagrams, types of joint, biomechanical analysis of elbow, shoulder, spinal column, hip knee and ankle. Design of orthopedic implant, specifications for a prosthetic joint, biocompatibility, requirement of a biomaterial, characteristics of different types of biomaterials, manufacturing process of implants, fixation of implants.
UNIT V MODELLING AND ERGONOMICS

OUTCOMES:
At the end of the course, the student should be able to:
• Explain the mechanics of physiological systems.
• Analyze the biomechanical systems.
• Design orthopaedic applications.

TEXT BOOKS:

REFERENCES:

BM6603 DIAGNOSTIC AND THERAPEUTIC EQUIPMENT – II L T P C
3 0 0 3

OBJECTIVES:
The student should be made to:
• Gather basic knowledge about measurements of parameters related to respiratory system
• Learn measurement techniques of sensory responses
• Understand different types and uses of diathermy units.
• Know ultrasound imaging technique and its use in diagnosis
• Know the importance of patient safety against electrical hazard

UNIT I RESPIRATORY MEASUREMENT STSTEM

UNIT II SENSORY MEASUREMENT
Psycho Physiological Measurements-for testing and sensory Responses, Electro occulograph, Electro retinograph, Audiometer-Pure tone, Speech. EGG (Electrogastrograph), galvanic skin resistance (GSR).

UNIT III DIATHERMY
IR and UV lamp and its application. Short wave diathermy, ultrasonic diathermy, Microwave diathermy, Electro surgery machine - Current waveforms, Tissue Responses, Electro surgical current level, Hazards and safety procedures.
UNIT IV ULTRASONIC TECHNIQUE 9
Diagnosis: Tissue Reaction, Basic principles of Echo technique, display techniques A, B and M mode, B Scan, Application of ultrasound as diagnostic tool – Echocardiogram, Echoencephalogram, abdomen, obstetrics and gynecology, ophthalmology.

UNIT V PATIENT SAFETY 9
Physiological effects of electricity – important susceptibility parameters – Macro shock – Micro shock hazards – Patient’s electrical environment – Isolated Power system – Conductive surfaces – Electrical safety codes and standards – Basic Approaches to Protection against shock, Protection equipment design, Electrical safety analyzer – Testing the Electric system

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
• Explain about measurements of parameters related to respiratory system
• Describe the measurement techniques of sensory responses
• Analyze different types and uses of diathermy units
• Discuss ultrasound imaging techniques and its usefulness in diagnosis
• Outline the importance of patient safety against electrical hazard

TEXT BOOK:

REFERENCES:

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING L T P C 3 1 0 4

OBJECTIVES:
• To learn discrete Fourier transform and its properties
• To know the characteristics of IIR and FIR filters learn the design of infinite and finite impulse response filters for filtering undesired signals
• To understand Finite word length effects
• To study the concept of Multirate and adaptive filters

UNIT I DISCRETE FOURIER TRANSFORM 9
UNIT II IIR FILTER DESIGN
Structures of IIR – Analog filter design – Discrete time IIR filter from analog filter – IIR filter design by
Impulse Invariance, Bilinear transformation, Approximation of derivatives – (LPF, HPF, BPF, BRF)
filer design using frequency translation.

UNIT III FIR FILTER DESIGN
Structures of FIR – Linear phase FIR filter – Fourier Series - Filter design using windowing techniques
(Rectangular Window, Hamming Window, Hanning Window), Frequency sampling techniques – Finite

UNIT IV FINITE WORDLENGTH EFFECTS
Fixed point and floating point number representations – ADC – Quantization- Truncation and Rounding
erors - Quantization noise – coefficient quantization error – Product quantization error - Overflow
error – Roundoff noise power - limit cycle oscillations due to product round off and overflow errors –
Principle of scaling

UNIT V DSP APPLICATIONS
Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational factor –
Adaptive Filters: Introduction, Applications of adaptive filtering to equalization.

TOTAL (L:45+T:15): 60 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to
• apply DFT for the analysis of digital signals & systems
• design IIR and FIR filters
• characterize finite Word length effect on filters
• design the Multirate Filters
• apply Adaptive Filters to equalization

TEXT BOOK:

REFERENCES:
Education / Prentice Hall, 2002.
2007.
OBJECTIVES:
To the study of nature and the facts about environment.
- To find and implement scientific, technological, economic and political solutions to environmental problems.
- To study the interrelationship between living organism and environment.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth’s interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT I ENVIRONMENT, ECOSYSTEMS AND BIODIVERSITY 12
Definition, scope and importance of Risk and hazards; Chemical hazards, Physical hazards, Biological hazards in the environment – concept of an ecosystem – structure and function of an ecosystem – producers, consumers and decomposers-Oxygen cycle and Nitrogen cycle – energy flow in the ecosystem – ecological succession processes – Introduction, types, characteristic features, structure and function of the (a) forest ecosystem (b) grassland ecosystem (c) desert ecosystem (d) aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to biodiversity definition: genetic, species and ecosystem diversity – biogeographical classification of India – value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, national and local levels – India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ conservation of biodiversity. Field study of common plants, insects, birds Field study of simple ecosystems – pond, river, hill slopes, etc.

UNIT II ENVIRONMENTAL POLLUTION 10
Definition – causes, effects and control measures of: (a) Air pollution (Atmospheric chemistry- Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain, oxygen and ozone chemistry;- Mitigation procedures- Control of particulate and gaseous emission, Control of SO$_2$, NO$_x$, CO and HC) (b) Water pollution : Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; absorption of heavy metals - Water treatment processes. (c) Soil pollution - soil waste management: causes, effects and control measures of municipal solid wastes – (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards–role of an individual in prevention of pollution – pollution case studies – Field study of local polluted site – Urban / Rural / Industrial / Agricultural.

UNIT III NATURAL RESOURCES 10
Forest resources: Use and over-exploitation, deforestation, case studies- timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and overutilization of surface and ground water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Energy Conversion processes – Biogas – production and uses, anaerobic digestion; case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

OUTCOMES:
Environmental Pollution or problems cannot be solved by mere laws. Public participation is an important aspect which serves the environmental Protection. One will obtain knowledge on the following after completing the course.

- Public awareness of environment at infant stage.
- Ignorance and incomplete knowledge has lead to misconceptions.
- Development and improvement in standard of living has lead to serious environmental disasters.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be made to:
- To implement Linear and Circular Convolution
- To implement FIR and IIR filters
- To study the architecture of DSP processor
- To demonstrate Finite word length effect

LIST OF EXPERIMENTS:
MATLAB / EQUIVALENT SOFTWARE PACKAGE
1. Generation of sequences (functional & random) & correlation
2. Linear and Circular Convolutions
3. Spectrum Analysis using DFT
4. FIR filter design
5. IIR filter design
6. Multirate Filters
7. Equalization

DSP PROCESSOR BASED IMPLEMENTATION
8. Study of architecture of Digital Signal Processor
9. MAC operation using various addressing modes
10. Linear Convolution
11. Circular Convolution
12. FFT Implementation
13. Waveform generation
14. IIR and FIR Implementation
15. Finite Word Length Effect

TOTAL: 45 PERIODS

OUTCOMES:
Students will be able to
- Carry out simulation of DSP systems
- Demonstrate their abilities towards DSP processor based implementation of DSP systems
- Analyze Finite word length effect on DSP systems
- Demonstrate the applications of FFT to DSP
- Implement adaptive filters for various applications of DSP

LAB EQUIPMENT FOR A BATCH OF 30 STUDENTS (2 students per system)
PCs with Fixed / Floating point DSP Processors (Kit / Add-on Cards) 15 Units

List of software required:
MATLAB with Simulink and Signal Processing Tool Box or Equivalent Software in desktop systems -15 Nos
Signal Generators (1MHz) – 15 Nos
CRO (20MHz) -15 Nos
OBJECTIVES:
- To provide practice on recording and analysis of different Bio potentials
- Study the function of different Therapeutic equipments.

LIST OF EXPERIMENTS:
1. Simulation of ECG – detection of QRS complex and heart rate
2. Study of shortwave and ultrasonic diathermy
3. Study of biotelemetry
4. Electrical safety measurements.
7. Study of ESU – cutting and coagulation modes
8. Recording of Audiogram
9. Design of ECG amplifier, recording and analysis using Lab View

TOTAL: 45 PERIODS

LAB REQUIREMENTS FOR 30 STUDENTS
Multioutput power supply (+15v, -15v, +30V variable, +5V , 2A) 2 Nos.
Short wave Diathermy 1 No.
Ultrasound diathermy 1 No.
Single parameter biotelemetry system 1 No.
Electrical Safety Analyser 1 No.
Spirometry with associated analysis system 1 No.
ECG Simulator 1 No.
Medical stimulator 1 No
Surgical diathermy with analyzer 1 No
Audiometer 1 No
Lab View.

OUTCOMES:
- The learner is able to analyze the Bio medical signals, to check the safety of any medical equipments and to have the knowledge about therapeutic equipments.

OBJECTIVES:
- The course will introduce the student to the fundamentals of pattern recognition and its application.
- The course will discuss several supervised and unsupervised algorithms suitable for pattern classification. Particular emphasis will be given to computational methods such as linear discriminant functions and nearest neighbor rule.
- The course also covers basic neural network architectures and learning algorithms, for applications in pattern recognition, image processing, and computer vision.
- The major focus of this course will be on the use of Pattern and Neural Classifiers for classification applications.
UNIT I INTRODUCTION AND SUPERVISED LEARNING 9
Overview of Pattern recognition, Types of Pattern recognition, Parametric and Nonparametric approach, Bayesian classifier, Discriminant function, non parametric density estimation, histograms, kernels, window estimators, k- nearest neighbor classifier, estimation of error rates.

UNIT II UNSUPERVISED LEARNING AND CLUSTERING ANALYSIS 9
Unsupervised learning- Hierarchial clustering- Single-linkage Algorithm, Complete – linkage Algorithm, Average-linkage algorithm and Ward’s method. Partitional clustering- Forgy’s Algorithm, k-means algorithm and Isodata Algorithm

UNIT III INTRODUCTION AND SIMPLE NEURAL NET 9

UNIT IV BACK PROPAGATION AND ASSOCIATIVE MEMORY 9
Back propagation network, generalized delta rule, Bidirectional Associative memory Hopfield Network

UNIT V NEURAL NETWORKS BASED ON COMPETITION 9
Kohonen Self organizing map, Learning Vector Quantisation, Counter Propagation network.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
• Explain the fundamentals of pattern recognition and neural networks.
• Design and apply different pattern recognition techniques to the applications of interest.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be made to:
- Learn ICT applications in medicine with an introduction to health informatics.
- Understand the theories and practices adopted in Hospital Information Systems in the light of medical standards, medical data formats and recent trends in Hospital Information Systems.

UNIT I MEDICAL INFORMATICS
Introduction – Medical Informatics – Bioinformatics – Health Informatics - Structure of Medical Informatics –Functional capabilities of Hospital Information System - On-line services and Off – line services - Dialogue with the computer

UNIT II MEDICAL STANDARDS

UNIT III MEDICAL DATA STORAGE AND AUTOMATION
Representation of Data, Data modeling Techniques, Relational Hierarchical and network Approach, Normalization techniques for Data handling - Plug-in Data Acquisition and Control Boards – Data Acquisition using Serial Interface – Medical Data formats – Signal, Image and Video Formats – Medical Databases - Automation in clinical laboratories - Intelligent Laboratory Information System – PACS.

UNIT IV HEALTH INFORMATICS
Bioinformatics Databases, Bio-information technologies, Semantic web and Bioinformatics, Genome projects, Clinical informatics, Nursing informatics, Public health informatics, Education and Training

UNIT V RECENT TRENDS IN MEDICAL INFORMATICS

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Discuss about health informatics and different ICT applications in medicine.
- Explain the function of Hospital Information Systems
- Analyze medical standards

TEXT BOOKS:

REFERENCES:
OBJECTIVES:

To Study about:

- The optical properties of the tissues and the applications of laser in diagnosis and therapy.

UNIT I OPTICAL PROPERTIES OF THE TISSUES 9

Refracti

on, Scattering, Absorption, Light transport inside the tissue, Tissue properties, Laser Characteristics as applied to medicine and biology-Laser tissue Interaction-Chemical-Thermal-Electromechanical – Photoablation processes.

UNIT II INSTRUMENTATION IN PHOTONICS 9

Instrumentation for absorption, Scattering and emission measurements, excitation light sources – high pressure arc lamp, LEDs, Lasers, Optical filters, - optical detectors – Time resolved and phase resolved detectors.

UNIT III SURGICAL APPLICATIONS OF LASERS 9

UNIT IV NON THERMAL DIAGNOSTIC APPLICATIONS 9

Optical coherence tomography, Elastography, Laser Induced Fluorescence (LIF)-Imaging, FLIM Raman Spectroscopy and Imaging, FLIM – Holographic and speckle application of lasers in biology and medicine.

UNIT V THERAPEUTIC APPLICATIONS 9

Phototherapy, Photodynamic therapy (PDT) - Principle and mechanism - Oncological and nononcological applications of PDT - Biostimulation effect – applications-Laser Safety Procedures.

OUTCOMES:

At the end of the course, the student should be able to:

- Demonstrate knowledge of the fundamentals of optical properties of tissues
- Describe surgical applications of laser.
- Describe photonics and its therapeutic applications.

TEXT BOOKS:

OBJECTIVES:

The student should be made to:

- Learn digital image fundamentals.
- Be exposed to simple image processing techniques.
- Be familiar with image compression and segmentation techniques.
- Learn to represent image in form of features.
UNIT I DIGITAL IMAGE FUNDAMENTALS 8

UNIT II IMAGE ENHANCEMENT 10

UNIT III IMAGE RESTORATION AND SEGMENTATION 9

UNIT IV WAVELETS AND IMAGE COMPRESSION 9

UNIT V IMAGE REPRESENTATION AND RECOGNITION 9

TOTAL: 45 PERIODS

OUTCOMES:
Upon successful completion of this course, students will be able to:
• Discuss digital image fundamentals.
• Apply image enhancement and restoration techniques.
• Use image compression and segmentation Techniques.
• Represent features of images.

TEXT BOOK:

REFERENCES:
OBJECTIVES:

- To practice the basic image processing techniques.
- To understand the functions of transforms.
- To know the effect of quantization.
- To explore the applications of image processing.

LIST OF EXPERIMENTS

Simulation using MATLAB (Image processing Tool Box) or equivalent software

1. Image sampling and quantization
2. Analysis of spatial and intensity resolution of images.
3. Intensity transformation of images.
4. DFT analysis of images
5. Transforms (Walsh, Hadamard, DCT, Haar)
6. Histogram Processing
7. Image Enhancement-Spatial filtering
8. Image Enhancement- Filtering in frequency domain
9. Image segmentation – Edge detection, line detection and point detection
10. Basic Morphological operations.
11. Basic Thresholding functions
12. Analysis of images with different color models.

MINI PROJECTS:

1. Applications to Biometric and security
2. Applications to Medical Images
3. Texture analysis with statistical properties
4. Boundary detection

OUTCOMES:

At the end of the course, the student should be able to:

- Perform filtering operations in the image
- Use transforms and analyse the characteristics of the image.
- Write program to analyse the texture of the image
- Implement project on simple image processing applications.
- Apply image processing technique to solve real world problems

Equipment for a batch of 30 students (2 students per experiment):
Pcs with related accessories- 15
MATLAB (licensed) or any equivalent software with Image processing tool box

Image processing software tools

REFERENCE:

OBJECTIVES:
The student should be made to:
- Study the principles of rehabilitation.
- Know new rehabilitation concepts for future development and applications.
- Learn therapeutic Exercise Techniques.
- Understand orthopedic prosthetics and orthotics in rehabilitation.

UNIT I
INTRODUCTION TO REHABILITATION & REHABILITATION TEAM:
What is Rehabilitation, Epidemiology of Rehabilitation, Health, Levels of Prevention, Preventive Rehabilitation, Diagnosis of Disability, Functional Diagnosis, Importance of Psychiatry in Functional diagnosis, Impairment disability handicap, Primary & secondary Disabilities, Rehabilitation team-Classification of members, The Role of Psychiatrist, Occupational therapist, Physical therapist, Recreation therapist, Prosthetist - Orthotist, Speech pathologist, Rehabilitation nurse, Social worker, Corrective therapist, Psychologist, Music therapist, Dance therapist & Biomedical engineer.

UNIT II
PRINCIPLES OF REHABILITATION:

UNIT III
THERAPEUTIC EXERCISE TECHNIQUE:

UNIT IV
PRINCIPLES IN MANAGEMENT OF COMMUNICATION:
Impairment-introduction to communication, Aphasia, Types of aphasia, Treatment of aphasic patient, Augmentative communication-general form of communication, types of visual aids, Hearing aids, Types of conventional hearing aid, Writing aids.

UNIT V
ORTHOTIC & PROSTHETIC DEVICES:
General orthotics, Classification of orthotics-functional & regional, General principles of Orthosis, Calipers- FO, AFO, KAFO, HKAFO.
Prosthetic devices: Hand and arm replacement, Body powered prosthetics, Myoelectric controlled prosthetics and Externally powered limb prosthetics.

OUTCOMES:
At the end of the course, the student should be able to:
- Explain the needs of rehabilitations and its future development
- Describe therapeutic exercise techniques, Orthopedic Prosthetics, Orthotics

TEXT BOOKS:
REFERENCES:

BM6811 PROJECT WORK L T P C
OBJECTIVES:
- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.

The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor. The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated based on oral presentation and the project report jointly by external and internal examiners constituted by the Head of the Department.

OUTCOMES:
- On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology.

TOTAL: 180 PERIODS

BM6001 BIOFLUIDS AND DYNAMICS L T P C
OBJECTIVES:
To provide the students:
- An understanding on the physiology and anatomy of studied systems,
- A capability to analyse cardiac, respiratory, soft tissue and orthopedic mechanics

UNIT I BIO-FLUID MECHANICS 10

UNIT II FLOW PROPERTIES OF BLOOD: 10
UNIT III CARDIAC MECHANICS

UNIT IV SOFT TISSUE MECHANICS
Pseudo elasticity, non-linear stress-strain relationship, Viscoelasticity, Structure, function and mechanical properties of skin, ligaments and tendons.

UNIT V ORTHOPEDIC MECHANICS
Mechanical properties of cartilage, diffusion properties of Articular cartilage, mechanical properties of bone, kinetics and kinematics of joints, lubrication of joints.

OUTCOMES:
At the end of the course, the student should be able to:
• Discuss on Cardiovascular and pulmonary system in human body
• Explain blood properties, especially the anatomy and physiology of blood vessels

TEXT BOOK:

REFERENCES:

BM6002 BIOMETRIC SYSTEMS L T P C
3 0 0 3

OBJECTIVES:
• To understand the technologies of fingerprint, iris, face and speech recognition
• To understand the general principles of design of biometric systems and the underlying trade-offs.
• To recognize personal privacy and security implications of biometrics based identification technology.
• To identify issues in the realistic evaluation of biometrics based systems.

UNIT I INTRODUCTION TO BIOMETRICS
UNIT II FINGERPRINT TECHNOLOGY

UNIT III FACE RECOGNITION AND HAND GEOMETRY
Introduction to face recognition, Neural networks for face recognition – face recognition from correspondence maps – Hand geometry – scanning – Feature Extraction - Adaptive Classifiers - Visual-Based Feature Extraction and Pattern Classification - feature extraction – types of algorithm – Biometric fusion.

UNIT IV MULTIMODAL BIOMETRICS AND PERFORMANCE EVALUATION

UNIT V BIOMETRIC AUTHENTICATION

OUTCOMES:
At the end of the course, the student should be able to:
- Demonstrate knowledge engineering principles underlying biometric systems.
- Analyze design basic biometric system applications.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be made to:

- Explore the potential of a virtual world for delivering application
- Determine possible instructional designs
- Understand the limitations
- Understand the barriers, solutions, and costs associated, including required training

UNIT I INTRODUCTION 10
The three I’s of virtual reality-commercial VR technology and the five classic components of a VR system - **Input Devices**: (Trackers, Navigation, and Gesture Interfaces): Three-dimensional position trackers, navigation and manipulation-interfaces and gesture interfaces-**Output Devices**: Graphics displays-sound displays & haptic feedback.

UNIT II MODELING 9
Geometric modeling - kinematics modeling- physical modeling - behaviour modeling - model management.

UNIT III HUMAN FACTORS 8
Methodology and terminology-user performance studies-VR health and safety issues-Usability of virtual reality system- cyber sickness -side effects of exposures to virtual reality environment

UNIT IV VR PROGRAMMING 10
Introducing Java 3D-loading and manipulating external models-using a lathe to make shapes. 3D Sprites- animated 3D sprites-particle systems.

UNIT V APPLICATIONS 8
Medical applications-military applications-robotics applications- Advanced Real time Tracking-other applications- games, movies, simulations, therapy

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:

- Design a system or process to meet given specifications with realistic engineering constraints.
- Function as a member of an engineering design team.
- Utilize technical resources
- Write technical documents and give technical oral presentations related to design mini project results.

TEXT BOOKS:
REFERENCES:

BM6004 COMPUTER ORGANISATION L T P C
 3 0 0 3

OBJECTIVES:
• To make students understand the basic structure and operation of digital computer.
• To Familiarize the students with arithmetic and logic unit and implementation of fixed point and floating-point arithmetic operations.
• To expose the students to two types of control unit techniques and the concept of pipelining.
• To familiarize the students with hierarchical memory system including cache memories and virtual memory.
• To expose the students with different ways of communicating with I/O devices and standard I/O interfaces.

UNIT I DIGITAL DATA REPRESENTATION

UNIT II BASIC COMPUTER ORGANIZATION AND DESIGN
Stored program organization (von Neumann architecture), Register Transfer language-Arithmetic Logic-Shift Micro operations, Instruction code timing and control, Instruction cycle Interrupt design of basic computer- Instruction sets and types, addressing modes, stack organization.

UNIT III PROCESSOR AND CONTROL UNIT
Processor basics, CPU organization, data representation, data path design, fixed point arithmetic, ALU, floating point arithmetic, control design - basic concepts, hardwired control, micro programmed control, pipeline control.

UNIT IV MEMORY AND I/O SYSTEMS
Memory technology, memory systems, virtual memory, high speed memories, interleaved memories, caches, design methods, associative memories, input/output system, programmed I/O, DMA and interrupts, I/O processors.

UNIT V PARALLEL PROCESSING & ARCHITECTURE
Parallelism in uniprocessor system, parallel computer structures, architectural classification schemes, pipelining, instruction and arithmetic pipelining, principles of designing pipelined processors, vector processing requirements. Architecture: RISC machines, design principles, RISC versus CISC, examples, RISC architecture, fault tolerant computers, static and dynamic dataflow design.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:

- Design arithmetic and logic unit.
- Implement fixed point and floating-point arithmetic units.
- Compare and contrast the memory systems.
- Compare and contrast the different ways of communicating with I/O devices.
- Compare and contrast parallel processing architectures.

TEXT BOOKS:

REFERENCES:
7. http://nptel.ac.in/.

MD6702 PHYSIOLOGICAL MODELING

OBJECTIVES:
The student should be made to:
- Understand and appreciate the value and application of Physiological models and Vital organs.
- Model dynamically varying physiological system
- Understand methods and techniques for analysis and synthesis of dynamic models
- Develop differential equations to describe the dynamic models, simulate and visualize, dynamic responses of physiological models using software.

UNIT I SYSTEM CONCEPT

UNIT II TRANSFER FUNCTION
System as an operator and use of Transfer function, Bio Engineering of coupled systems, Examples of transformed signals and circuits for transfer function with impedance concept- Development of lung model, Impedance of a two stage ladder network, Measurement of airway resistance .
UNIT III PERIODIC SIGNALS 10
Sinusoidal Functions, Analysis of Instrumentation to measure air flow system, second order system – representation of a respiratory system, Evaluation of Transfer function from frequency response for muscle response modes, Relationship between Phase lag and Time Delay-closed loop aspects of pupillary control system, Transient Response of an Undamped Second order system, General Description of Natural Frequency Damping, Physical Significance of under damped responses of post systolic operations in aortic arch.

UNIT IV FEEDBACK 10

UNIT V SIMULATION OF BIOLOGICAL SYSTEMS 8
Simulation of thermal regulation, pressure and flow control in circulation, occulo motor system, Endocrinal system, functioning of receptors, introduction to digital control system.

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Explain application of Physiological models.
- Model dynamically varying physiological system
- Discuss methods and techniques to analyze and synthesis dynamic models
- Develop differential equations to describe the dynamic models, simulate and visualize
- Implement physiological models using software to get dynamic responses

TEXT BOOKS

REFERENCES:

BM6005 BIO INFORMATICS L T P C 3 0 0 3

OBJECTIVES:
The student should be made to:
- Expose to the need for Bioinformatics tools
- Be familiar with the modeling techniques
- Learn microarray analysis
- Expose to Pattern Matching and Visualization

82
UNIT I INTRODUCTION
Need for Bioinformatics technologies – Overview of Bioinformatics technologies Structural bioinformatics – Data format and processing – Secondary resources and applications – Role of Structural bioinformatics - Biological Data Integration System.

UNIT II DATAWAREHOUSING AND DATAMINING IN BIOINFORMATICS
Bioinformatics data – Data warehousing architecture – data quality – Biomedical data analysis – DNA data analysis – Protein data analysis – Machine learning – Neural network architecture and applications in bioinformatics.

UNIT III MODELING FOR BIOINFORMATICS

UNIT IV PATTERN MATCHING AND VISUALIZATION

UNIT V MICROARRAY ANALYSIS

TOTAL: 45 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to
- Develop models for biological data
- Apply pattern matching techniques to bioinformatics data – protein data genomic data.
- Apply micro array technology for genomic expression study

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To facilitate the understanding of Quality Management principles and process.

UNIT I INTRODUCTION 9

UNIT II TQM PRINCIPLES 9
Leadership - Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.

UNIT III TQM TOOLS AND TECHNIQUES I 9
The seven traditional tools of quality - New management tools - Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT - Bench marking - Reason to bench mark, Bench marking process - FMEA - Stages, Types.

UNIT IV TQM TOOLS AND TECHNIQUES II 9

UNIT V QUALITY SYSTEMS 9

OUTCOMES:
- The student would be able to apply the tools and techniques of quality management to manufacturing and services processes.

TEXT BOOK:

REFERENCES:
OBJECTIVES:
The student should be made to:
- Learn the key principles for telemedicine and health.
- Understand telemedical technology.
- Know telemedical standards, mobile telemedicine and its applications.

UNIT I TELEMEDICINE AND HEALTH
History and Evolution of telemedicine, Functional diagram of telemedicine system, Telemedicine, Telehealth, Telecare, Organs of telemedicine, Global and Indian scenario, Ethical and legal aspects of Telemedicine - Confidentiality, Social and legal issues, Safety and regulatory issues, Advances in Telemedicine.

UNIT II TELEMEDICAL TECHNOLOGY

UNIT III TELEMEDICAL STANDARDS

UNIT IV MOBILE TELEMEDICINE
Tele radiology: Definition, Basic parts of teleradiology system: Image Acquisition system Display system, Tele pathology, multimedia databases, color images of sufficient resolution, Dynamic range, spatial resolution, compression methods, Interactive control of color, Medical information storage and management for telemedicine- patient information medical history, test reports, medical images diagnosis and treatment. Hospital information system - Doctors, paramedics, facilities available. Pharmaceutical information system.

UNIT V TELEMEDICAL APPLICATIONS

OUTCOMES:
At the end of the course, the student should be able to:
- Apply multimedia technologies in telemedicine.
- Explain Protocols behind encryption techniques for secure transmission of data.
- Apply telehealth in healthcare.
TEXT BOOK:

REFERENCES:

BM6006 NANO ELECTRONICS

OBJECTIVE:
• To introduce quantum mechanics concepts, approximations and statistical mechanics for understanding nano systems

UNIT I INTRODUCTION TO QUANTUM MECHANICS 9
Particles, waves, probability amplitudes, schrodinger equation, wavepackets solutions, operators, expectation values, eigenfuntions, piecewise constant potentials.

UNIT II SIMPLE HARMONIC OSCILLATORS AND APPROXIMATIONS 9
SHM Operators, SHM wavepacket solutions, Quantum LC circuit, WKB approximations, variational methods.

UNIT III SYSTEMS WITH TWO AND MANY DEGREES OF FREEDOM 9
Two level systems with static and dynamic coupling, problems in more than one dimensions, electromagnetic field quantization, density of states.

UNIT IV STATISTICAL MECHANICS 9
Basic concepts, microscopic, quantum systems in equilibrium, statistical models applied to metals and semiconductors

UNIT V APPLICATIONS 9
Hydrogen and Helium atoms, electronic states, Atomic force microscope, Nuclear Magnetic Resonance, carbon nanotube properties and applications

TOTAL: 45 PERIODS

OUTCOMES:
The learner is able to:
• Explain quantum mechanics concepts, approximations and statistical mechanics for understanding nano systems
TEXT BOOKS:

REFERENCES:

EC6703 EMBEDDED AND REAL TIME SYSTEMS

OBJECTIVES:
The student should be made to:
- Learn the architecture and programming of ARM processor.
- Be familiar with the embedded computing platform design and analysis.
- Be exposed to the basic concepts of real time Operating system.
- Learn the system design techniques and networks for embedded systems.

UNIT I INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS
Complex systems and micro processors– Embedded system design process –Design example: Model train controller- Instruction sets preliminaries - ARM Processor – CPU: programming input and output- supervisor mode, exceptions and traps – Co-processors- Memory system mechanisms – CPU performance- CPU power consumption.

UNIT II EMBEDDED COMPUTING PLATFORM DESIGN
The CPU Bus-Memory devices and systems–Designing with computing platforms – consumer electronics architecture – platform-level performance analysis - Components for embedded programs- Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing.

UNIT III PROCESSES AND OPERATING SYSTEMS
Introduction – Multiple tasks and multiple processes – Multirate systems- Preemptive real-time operating systems- Priority based scheduling- Interprocess communication mechanisms – Evaluating operating system performance- power optimization strategies for processes – Example Real time operating systems-POSIX-Windows CE.
UNIT V SYSTEM DESIGN TECHNIQUES AND NETWORKS
Design methodologies - Design flows - Requirement Analysis – Specifications-System analysis and architecture design – Quality Assurance techniques- Distributed embedded systems – MPSoCs and shared memory multiprocessors.

UNIT V CASE STUDY
Data compressor - Alarm Clock - Audio player - Software modem-Digital still camera - Telephone answering machine-Engine control unit – Video accelerator.

OUTCOMES:
Upon completion of the course, students will be able to:
- Describe the architecture and programming of ARM processor.
- Outline the concepts of embedded systems
- Explain the basic concepts of real time Operating system design.
- Use the system design techniques to develop software for embedded systems
- Differentiate between the general purpose operating system and the real time operating system
- Model real-time applications using embedded-system concepts

TEXT BOOK:

REFERENCES:

CS6551 COMPUTER NETWORKS

OBJECTIVES:
The student should be made to:
- Understand the division of network functionalities into layers.
- Be familiar with the components required to build different types of networks
- Be exposed to the required functionality at each layer
- Learn the flow control and congestion control algorithms

UNIT I FUNDAMENTALS & LINK LAYER
Building a network – Requests - Layering and protocols - Internet Architecture – Network software – Performance; Link layer Services - Framing - Error Detection - Flow control
UNIT II MEDIA ACCESS & INTERNETWORKING 9
Media access control - Ethernet (802.3) - Wireless LANs – 802.11 – Bluetooth - Switching and bridging – Basic Internetworking (IP, CIDR, ARP, DHCP, ICMP)

UNIT III ROUTING 9
Routing (RIP, OSPF, metrics) – Switch basics – Global Internet (Areas, BGP, IPv6), Multicast – addresses – multicast routing (DVMRP, PIM)

UNIT IV TRANSPORT LAYER 9
Overview of Transport layer - UDP - Reliable byte stream (TCP) - Connection management - Flow control - Retransmission – TCP Congestion control - Congestion avoidance (DECbit, RED) – QoS – Application requirements

UNIT V APPLICATION LAYER 9
Traditional applications - Electronic Mail (SMTP, POP3, IMAP, MIME) – HTTP – Web Services – DNS - SNMP

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Identify the components required to build different types of networks
- Choose the required functionality at each layer for given application
- Identify solution for each functionality at each layer
- Trace the flow of information from one node to another node in the network

TEXT BOOK:

REFERENCES:

EC6601 VLSI DESIGN L T P C
3 0 0 3

OBJECTIVES:
- In this course, the MOS circuit realization of the various building blocks that is common to any microprocessor or digital VLSI circuit is studied.
- Architectural choices and performance tradeoffs involved in designing and realizing the circuits in CMOS technology are discussed.
- The main focus in this course is on the transistor circuit level design and realization for digital operation and the issues involved as well as the topics covered are quite distinct from those encountered in courses on CMOS Analog IC design.
UNIT I MOS TRANSISTOR PRINCIPLE 9
NMOS and PMOS transistors, Process parameters for MOS and CMOS, Electrical properties of
CMOS circuits and device modeling, Scaling principles and fundamental limits, CMOS inverter
scaling, propagation delays, Stick diagram, Layout diagrams

UNIT II COMBINATIONAL LOGIC CIRCUITS 9
Examples of Combinational Logic Design, Elmore’s constant, Pass transistor Logic, Transmission
gates, static and dynamic CMOS design, Power dissipation – Low power design principles

UNIT III SEQUENTIAL LOGIC CIRCUITS 9
Static and Dynamic Latches and Registers, Timing issues, pipelines, clock strategies, Memory
architecture and memory control circuits, Low power memory circuits, Synchronous and
Asynchronous design

UNIT IV DESIGNING ARITHMETIC BUILDING BLOCKS 9
Data path circuits, Architectures for ripple carry adders, carry look ahead adders, High speed adders,
accumulators, Multipliers, dividers, Barrel shifters, speed and area tradeoff

UNIT V IMPLEMENTATION STRATEGIES 9
Full custom and Semi custom design, Standard cell design and cell libraries, FPGA building block
architectures, FPGA interconnect routing procedures.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students should
• Explain the basic CMOS circuits and the CMOS process technology.
• Discuss the techniques of chip design using programmable devices.
• Model the digital system using Hardware Description Language.

TEXT BOOKS:

REFERENCES:
 1993
 Prentice Hall of India, 2005
 2007.

BM6007 INTERNET AND JAVA PROGRAMMING L T P C
3 0 0 3

OBJECTIVES:
The student should be made to:
• Understand internet concepts,
• Learn client and server programming .
• Understand of the essentials of java for developing internet applications
UNIT I BASIC NETWORK AND WEB CONCEPTS 8
Internet standards-TCP and UDP protocols-URLs-MIME-CGI- Internet applications: FTP, Telnet, Email, Chat. World Wide Web: Overview of HTTP, HTTP request-response, generation of dynamic web pages, cookies

UNIT II CLIENT SIDE PROGRAMMING 8

UNIT III DYNAMIC HTML 8
Dynamic HTML-introduction-object model and collections-event model- Cascading Style Sheet (CSS): the need for CSS, introduction to CSS, basic syntax and structure, using CSS, manipulating text, padding, lists, Positioning using CSS.

UNIT IV JAVA PROGRAMMING 12

UNIT V SERVER SIDE PROGRAMMING 9

TOTAL:45 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to
• Explain basic concepts of internet
• Discuss the need for client and server side programming
• Write java programs
• Develop internet applications using Java.

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be made to:
- Be familiar with the nervous system development
- Be exposed to neuronal diseases and disorders
- Be familiar with nerve reconstruction and repairing

UNIT I BASICS OF NEURON STRUCTURE AND FUNCTIONS 9

UNIT II BRAIN, BRAIN STEM AND SPINAL CORD 9

UNIT IV NEUROPHYSIOLOGY & NEURORADIOLOGY 9

UNIT III NEURONAL DISEASES AND DISORDERS 9

UNIT V NERVE RECONSTRUCTION AND REPAIRING 9
Regeneration of the nervous system. Nerve graft; Neural tissue engineering; Drug delivery system in CNS. Cognitive & neurobehavioral rehabilitation.

TOTAL : 45 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to
- Explain the structure of human nervous system
- Apply neural tissue engineering for rehabilitation
- Regenerate nervous system

TEXT BOOKS:

REFERENCES:
OBJECTIVES:
The student should be made to:
• Learn various MEMS fabrication techniques.
• Understand different types of sensors and actuators and their principles of operation at the micro scale level.
• Know the application of MEMS in different field of medicine.

UNIT I MEMS MATERIALS AND FABRICATION 9
Typical MEMs and Microsystems, materials for MEMS - active substrate materials-Silicon and its compounds, Silicon piezoresistors, Gallium Arsenide, quartz, polymers. Micromachining-photolithography, thin film deposition, doping, etching, bulk machining, wafer bonding, LIGA

UNIT II MECHANICAL AND THERMAL SENSORS AND ACTUATORS 9
Mechanics for MEMs design- static bending of thin plates, mechanical vibration, thermomechanics, fracture and thin film mechanics. Mechanical sensors and actuators – beam and cantilever – microplates, strain, pressure and flow measurements, Thermal sensors and actuators- actuator based on thermal expansion, thermal couples, thermal resistor, Shape memory alloys- Inertia sensor, flow sensor

UNIT III ELECTROSTATIC AND PIEZOELECTRIC SENSORS AND ACTUATORS 9
Parallel plate capacitor, pull in effect, Electrostatic sensors and actuators- Inertia sensor, Pressure sensor, flow sensor, tactile sensor, comb drive. Properties of piezoelectric materials, Piezoelectric sensor and actuator – inchworm motor, inertia sensor, flow sensor.

UNIT IV MICROFLUIDIC SYSTEMS 9
Fluid dynamics, continuity equation, momentum equation, equation of motion, laminar flow in circular conduits, fluid flow in microconduits, in submicrometer and nanoscale. Microscale fluid, expression for liquid flow in a channel, fluid actuation methods, dielectrophoresis, microfluid dispenser, microneedle, micropumps-continuous flow system, micromixers

UNIT V APPLICATIONS OF BIOMEMS 9
CAD for MEMs, Drug delivery, micro total analysis systems (MicroTAS) detection and measurement methods, microsystem approaches to polymerase chain reaction (PCR),DNA sensor, MEMS based drug delivery

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
• Discuss various MEMS fabrication techniques.
• Explain different types of sensors and actuators and their principles of operation at the micro Scale level.
• Apply MEMS in different field of medicine.

TEXT BOOKS:

93
REFERENCES:

BM6010 ASSIST DEVICES

OBJECTIVES:
The student should be made to:
- Study various mechanical techniques that will help failing heart.
- Learn the functioning of the unit which does the clearance of urea from the blood
- Understand the tests to assess the hearing loss and development of electronic devices to compensate for the loss.
- Know the various orthodic devices and prosthetic devices to overcome orthopaedic problems.
- Understand electrical stimulation techniques used in clinical applications.

UNIT I CARDIAC ASSIST DEVICES
Principle of External counter pulsation techniques, intra aortic balloon pump, Auxillary ventricle and schematic for temporary bypass of left ventricle, prosthetic heart valves.

UNIT II HEMODIALYSERS
Artificial kidney, Dialysis action, hemodialyser unit, membrane dialysis, portable dialyser monitoring and functional parameters.

UNIT III HEARING AIDS
Common tests – audiograms, airconduction, bone conduction, masking techniques, SISI, Hearing aids – principles, drawbacks in the conventional unit, DSP based hearing aids.

UNIT IV PROSTHETIC AND ORTHODIC DEVICES
Hand and arm replacement – different types of models, externally powered limb prosthesis, feedback in orthodic system, functional electrical stimulation, sensory assist devices.

UNIT V RECENT TRENDS
Transcutaneous electrical nerve stimulator, bio-feedback.

OUTCOMES:
At the end of the course, the student should be able to:
- Explain the functioning and usage of electromechanical units which will restore normal functional ability of particular organ that is defective temporarily or permanently.
TEXT BOOKS:

REFERENCE:

CS6003 AD HOC AND SENSOR NETWORKS L T P C
 3 0 0 3

OBJECTIVES:
The student should be made to:
• Understand the design issues in ad hoc and sensor networks.
• Learn the different types of MAC protocols.
• Be familiar with different types of adhoc routing protocols.
• Be expose to the TCP issues in adhoc networks.
• Learn the architecture and protocols of wireless sensor networks.

UNIT I INTRODUCTION
propagation Mechanisms – Characteristics of the Wireless Channel -mobile ad hoc networks
(MANETs) and wireless sensor networks (WSNs): concepts and architectures. Applications of Ad Hoc

UNIT II MAC PROTOCOLS FOR AD HOC WIRELESS NETWORKS
Issues in designing a MAC Protocol- Classification of MAC Protocols- Contention based protocols-
Contention based protocols with Reservation Mechanisms- Contention based protocols with
Scheduling Mechanisms – Multi channel MAC-IEEE 802.11

UNIT III ROUTING PROTOCOLS AND TRANSPORT LAYER IN
AD HOC WIRELESS NETWORKS
Issues in designing a routing and Transport Layer protocol for Ad hoc networks- proactive routing,
reactive routing (on-demand), hybrid routing- Classification of Transport Layer solutions-TCP over
Ad hoc wireless Networks.

UNIT IV WIRELESS SENSOR NETWORKS (WSNS) AND
MAC PROTOCOLS
Single node architecture: hardware and software components of a sensor node - WSN Network
architecture: typical network architectures-data relaying and aggregation strategies -MAC layer
protocols: self-organizing, Hybrid TDMA/FDMA and CSMA based MAC- IEEE 802.15.4.

UNIT V WSN ROUTING, LOCALIZATION & QOS
Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localization-absolute and
relative localization, triangulation-QOS in WSN-Energy Efficient Design-Synchronization-Transport
Layer issues.

TOTAL: 45 PERIODS
OUTCOMES:
Upon completion of the course, the student should be able to:
• Explain the concepts, network architectures and applications of ad hoc and wireless sensor networks
• Analyze the protocol design issues of ad hoc and sensor networks
• Design routing protocols for ad hoc and wireless sensor networks with respect to some protocol design issues
• Evaluate the QoS related performance measurements of ad hoc and sensor networks

TEXT BOOK:

REFERENCES:

MD6008 FIBER OPTICS AND LASERS IN MEDICINE
L T P C
3 0 0 3

OBJECTIVES:
The student should be made to:
• Be familiar with objective property of tissues
• Be exposed to Optical Holography

UNIT I OPTICAL PROPERTIES OF THE TISSUES
9
Refraction, scattering, absorption, light transport inside the tissue, tissue properties, Light interaction with tissues, optothermal interaction, fluorescence, speckles.

UNIT II INSTRUMENTATION IN PHOTONICS
9
Instrumentation for absorption, scattering and emission measurements, excitation light sources – high pressure arc lamp, solid state LEDs, optical filters, polarisers, time resolved and phase resolved detectors.

UNIT III APPLICATIONS OF LASERS
9
Laser in tissue welding, lasers in dermatology, lasers in ophthalmology, otolaryngology, urology.

UNIT IV OPTICAL HOLOGRAPHY
9
Wave fronts, interference patterns, principle of hologram, optical hologram, applications.
UNIT V SPECIAL TECHNIQUES

Near field imaging of biological structures, in-vitro clinical diagnostic, fluorescent spectroscopy, photodynamic therapy.

TOTAL: 45 PERIODS

OUTCOMES:
Upon Completion of the course, the students will be able to:
- Apply lasers in different areas of medicine.
- Explain the special techniques of Lasers.
- Use the Photonics instrumentation.

TEXT BOOKS

REFERENCES:

BM6011 COMPUTER HARDWARE AND INTERFACING

OBJECTIVES:
The student should be made to:
- Learn advanced 8086 family of processors, motherboards, PC based data acquisition and troubleshooting of PCs.

UNIT I INTEL ADVANCED PROCESSORS

80186, 80286, 80386, 80486 - Architecture, Memory management.

UNIT II PENTIUM PROCESSORS

Pentium Architecture- Memory Management- Pentium Pro microprocessors – Pentium II, Pentium III , Pentium 4 – Special features and software changes.

UNIT III PC HARDWARE OVERVIEW

Functional units & Interconnection, New generation motherboards 286 to Pentium 4 Bus interface – ISA – EISA- VESA- PCI- PCIX, Memory and I/O port addresses, Peripheral interfaces and controller.

UNIT IV PC BASED DATA ACQUISITION

Plug in data acquisition and control boards and programming- ADC, DAC, Digital I/O board and Timing Board, Serial port and parallel port programming. Data acquisition and programming using serial interfaces- PC and microcontroller serial ports, USB and IEEE 1394.

UNIT V TROUBLESHOOTING, MAINTAINING & REPAIRING

Memory troubleshooting, Monitor troubleshooting, Motherboard troubleshooting, Port troubleshooting, Sound Boards and Video adapters troubleshooting, USB troubleshooting.

TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
- Explain 8086 family of processors, motherboards, PC based data acquisition and troubleshooting of PCs

TEXT BOOKS:

REFERENCE:

CS6012 SOFT COMPUTING L T P C
3 0 0 3

OBJECTIVES
The student should be made to:
- Learn the various soft computing frame works
- Be familiar with design of various neural networks
- Be exposed to fuzzy logic
- Learn genetic programming
- Be exposed to hybrid systems

UNIT I INTRODUCTION

UNIT II NEURAL NETWORKS

UNIT III FUZZY LOGIC
UNIT IV GENETIC ALGORITHM

UNIT V HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

OUTCOMES:
Upon completion of the course, the student should be able to:
- Apply various soft computing frame works
- Design of various neural networks
- Use fuzzy logic
- Apply genetic programming
- Discuss hybrid soft computing

TEXT BOOKS:

REFERENCES:

GE6075 PROFESSIONAL ETHICS IN ENGINEERING L T P C 3 0 0 3

OBJECTIVE:
- To enable the students to create an awareness on Engineering Ethics and Human Values, to instill Moral and Social Values and Loyalty and to appreciate the rights of others.

UNIT I HUMAN VALUES
UNIT II ENGINEERING ETHICS

UNIT III ENGINEERING AS SOCIAL EXPERIMENTATION
Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

UNIT IV SAFETY, RESPONSIBILITIES AND RIGHTS

UNIT V GLOBAL ISSUES

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, the student should be able to apply ethics in society, discuss the ethical issues related to engineering and realize the responsibilities and rights in the society

TEXTBOOKS:

REFERENCES:

Web sources:
1. www.onlineethics.org
2. www.nspe.org
3. www.globalethics.org
4. www.ethics.org
MD6007 BODY AREA NETWORKS L T P C
3 0 0 3

OBJECTIVES:
The student should be made to:
- Learn about body area networks’ and different hardwares related to it
- Provide knowledge in the applications of Body Area Networks.

UNIT I INTRODUCTION
Definition, BAN and Healthcare, Technical Challenges- Sensor design, biocompatibility, Energy Supply, optimal node placement, number of nodes, System security and reliability, BSN Architecture – Introduction

UNIT II HARDWARE FOR BAN

UNIT III WIRELESS COMMUNICATION AND NETWORK
RF communication in Body, Antenna design and testing, Propagation, Base Station-Network topology-Stand –Alone BAN, Wireless personal Area Network Technologies-IEEE 802.15.1,IEEE P802.15.13, IEEE 802.15.14, Zigbee

UNIT IV COEXISTENCE ISSUES WITH BAN
Interferences – Intrinsic - Extrinsic, Effect on transmission, Counter measures- on physical layer and data link layer, Regulatory issues-Medical Device regulation in USA and Asia, Security and Self protection-Bacterial attacks, Virus infection ,Secured protocols, Self protection.

UNIT V APPLICATIONS OF BAN
Monitoring patients with chronic disease, Hospital patients, Elderly patients, Cardiac arrhymanias monitoring, Multi patient monitoring systems, Multichannel Neural recording, Gait analysis, Sports Medicine, Electronic pill

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to:
- Explain about working of Body Area Network
- Discuss the applications of BAN.

TEXT BOOK:

REFERENCES:
ME6002 REFRIGERATION AND AIR CONDITIONING L T P C
3 0 0 3

OBJECTIVES:
- To understand the underlying principles of operations in different Refrigeration & Air conditioning systems and components.
- To provide knowledge on design aspects of Refrigeration & Air conditioning systems

UNIT I INTRODUCTION 5
Introduction to Refrigeration - Unit of Refrigeration and C.O.P.– Ideal cycles- Refrigerants Desirable properties – Classification - Nomenclature - ODP & GWP.

UNIT II VAPOUR COMPRESSION REFRIGERATION SYSTEM 10

UNIT III OTHER REFRIGERATION SYSTEMS 8
Working principles of Vapour absorption systems and adsorption cooling systems – Steam jet refrigeration- Ejector refrigeration systems- Thermoelectric refrigeration- Air refrigeration - Magnetic - Vortex and Pulse tube refrigeration systems.

UNIT IV PSYCHROMETRIC PROPERTIES AND PROCESSES 10
Properties of moist Air-Gibbs Dalton law, Specific humidity, Dew point temperature, Degree of saturation, Relative humidity, Enthalpy, Humid specific heat, Wet bulb temperature Thermodynamic wet bulb temperature, Psychrometric chart; Psychrometric of air-conditioning processes, mixing of air streams.

UNIT V AIR CONDITIONING SYSTEMS AND LOAD ESTIMATION 12
Air conditioning loads: Outside and inside design conditions; Heat transfer through structure, Solar radiation, Electrical appliances, Infiltration and ventilation, internal heat load; Apparatus selection; fresh air load, human comfort & IAQ principles, effective temperature & chart, calculation of summer & winter air conditioning load; Classifications, Layout of plants; Air distribution system; Filters; Air Conditioning Systems with Controls: Temperature, Pressure and Humidity sensors, Actuators & Safety controls.

TOTAL: 45 PERIODS

OUTCOME:
Upon completion of this course, the students can able to demonstrate the operations in different Refrigeration & Air conditioning systems and also able to design Refrigeration & Air conditioning systems.

TEXT BOOK:

REFERENCES:
OBJECTIVES:
- To introduce speech production and related parameters of speech.
- To show the computation and use of techniques such as short time Fourier transform, linear predictive coefficients and other coefficients in the analysis of speech.
- To understand different speech modeling procedures such as Markov and their implementation issues.

UNIT I BASIC CONCEPTS 10

UNIT II SPEECH ANALYSIS 10

UNIT III SPEECH MODELING 8

UNIT IV SPEECH RECOGNITION 8
Large Vocabulary Continuous Speech Recognition: Architecture of a large vocabulary continuous speech recognition system – acoustics and language models – n-grams, context dependent sub-word units; Applications and present status.

UNIT V SPEECH SYNTHESIS 9
Text-to-Speech Synthesis: Concatenative and waveform synthesis methods, sub-word units for TTS, intelligibility and naturalness – role of prosody, Applications and present status.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to
- Model speech production system and describe the fundamentals of speech.
- Extract and compare different speech parameters.
- Choose an appropriate statistical speech model for a given application.
- Design a speech recognition system.
- Use different speech synthesis techniques.

TEXT BOOKS:
REFERENCES:

GE6078 INTELLECTUAL PROPERTY RIGHTS

OBJECTIVES:
The student should be made to:
- Learn how to value intangible assets, taking into account their commercial potential and legal status.
- Explore the legal & business issues surrounding marketing of new products related to technology.

UNIT I INTRODUCTION

UNIT II PATENTS, COPYRIGHTS AND TRADEMARKS

UNIT III INTERNATIONAL STANDARDISATION

UNIT IV INDIAN STRATEGIES

UNIT V CASE STUDIES
Case Studies on – Patents (Basumati rice, turmeric, Neem, etc.) – Copyright and related rights – Trade Marks – Industrial design and Integrated circuits – Geographic indications – Protection against unfair competition.

TOTAL: 45 PERIODS

OUTCOMES:
Upon completion of the course, students will be able to:
- Review an intellectual property portfolio and comprehend the extent of their protection.
- Develop a business plan that advances the value of their intellectual property portfolio
- Develop a strategy of marketing their intellectual property and understand some negotiation basics.
- Explain some of the limits of their intellectual property rights and comprehend some basic legal pitfalls.
TEXT BOOK:

REFERENCES:
3. www.iptoday.com

WEBSITE:
www.ipmatters.net/features/000707_gibbs.html.

MF6009 RAPID PROTOTYPING

OBJECTIVE:
Generating a good understanding of RP history, its development and applications. To expose the students to different types of Rapid prototyping processes, materials used in RP systems and reverse engineering.

UNIT I INTRODUCTION

UNIT II LIQUID BASED AND SOLID BASED RAPID PROTOTYPING SYSTEMS
Classification – Liquid based system - Stereolithography Apparatus (SLA), details of SL process, products, Advantages, Limitations, Applications and Uses. Solid based system - Fused Deposition Modeling, principle, process, products, advantages, applications and uses - Laminated Object Manufacturing

UNIT III POWDER BASED RAPID PROTOTYPING SYSTEMS

UNIT IV MATERIALS FOR RAPID PROTOTYPING SYSTEMS

UNIT V REVERSE ENGINEERING and NEW TECHNOLOGIES
Introduction, measuring device- contact type and non-contact type, CAD model creation from point clouds-preprocessing, point clouds to surface model creation, medical data processing - types of medical imaging, software for making medical models, medical materials, other applications - Case study.

TOTAL: 45 PERIODS
OUTCOMES:
- To provide knowledge on different types of Rapid Prototyping systems and its applications in various fields

TEXT BOOKS:

REFERENCES:

BM6012 WEARABLE SYSTEMS

OBJECTIVES:
The student should be made to:
- Study about sensors and its application in wearable systems
- Learn about applications of wearable systems

UNIT I SENSORS
Need for wearable systems, Sensors for wearable systems-Inertia movement sensors, Respiration activity sensor, Inductive plethysmography, Impedance plethysmography, pneumography, Wearable ground reaction force sensor, GSR, Radiant thermal sensor, Wearable motion sensors, CMOS – Based Biosensors, E-Textiles, Bio compatibility

UNIT II SIGNAL PROCESSING
Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, Constraint on sampling frequency for reduced energy consumption, light weight signal processing, Rejection of irrelevant information, Data mining

UNIT III ENERGY HARVESTING FOR WEARABLE DEVICES
Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

UNIT IV WIRELESS HEALTH SYSTEMS
Need for wireless monitoring, Definition of Body area network, BAN and Healthcare, Technical Challenges- System security and reliability, BAN Architecture – Introduction, Wireless communication techniques.

UNIT V APPLICATIONS OF WEARABLE SYSTEMS
Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, Multi parameter monitoring, Neural recording, Gait analysis, Sports Medicine, Smart Fabrics
OUTCOMES:
At the end of the course, the student should be able to:
- Explain need of wireless health systems and the application of wearable systems

TEXT BOOKS:

REFERENCES:
1. Hang, Yuan-Ting, "wearable medical sensors and systems", Springer-2013