2011- Larencer Privade

MP-5809

(REVISED COURSE)

(3 Hours)

[Total Marks: 100

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Attempt any Four questions out of remaining six questions.
 - (3) Assume suitable data.
 - (4) Assumption should be clearly stated.

5

20

- 1. (a) What is the CT number of cartilage whose attenuation coefficient is 0.28 cm⁻¹ and attenuation coefficient of water is 0.195? (Magnification constant is 500).
 - (b) A hydrogen proton is placed in magnetic field of 2.5 Tesla. Calculate the amount of photon energy required to switch from spin-up state to spin-down state. (Plank's constant = 6.6 x 10⁻³⁴ J. sec., Gyromagnetic ratio = 26.8 x 10⁷ Hz/T).
 - (c) Explain the construction and working of Xenon-gas detector with the help of 10 diagram.
- 2. (a) Explain slice selection, frequency and phase encoding in MRI with the help 15 of diagrams.
 - (b) Compare permanent and superconducting magnets.
- 3. (a) Explain Radon Transform and its significance in CT imaging.
 - (b) Find the projections of the image given below and reconstruct the image using 10 iterative ray by ray construction technique.

2	3
4	7

- 4. (a) Explain the technology used in spiral CT machine. Define Pitch.
 - (b) Compare EMI scanner with 3rd generation CT scanner with the help of diagrams. 10
- 5. (a) List the various suppression and localization techniques in Magnetic Resonance 10 Spectroscopy (MRS). Explain any one single voxel spectroscopy in detail.
 - (b) Explain the metabolites of MRS spectrum. Explain any one water suppression 10 technique in detail.
- 6. (a) Explain T₁, and T₂ relaxation times and their importance in MRI imaging.
 - (b) What are the biological effects of CT?
 - (c) Hydrogen atom (H') is placed in magnetic field strength of 3 Tesla. Calculate 5 the larmor frequency. (Gyromagnetic ratio of H' = $26.8 \times 10^7 \text{ Hz/T}$, Planks constant = $6.6 \times 10^{-34} \text{ J/sec}$, Nuclear spin I = $\frac{1}{2}$)
- 7. Write short notes on (any three)
 - (a) Electrical Impedance Tomography
 - (b) PET-CT hybrid imaging
 - (c) Filtered Backprojection reconstruction technique
 - (d) Artifacts in CT-imaging.